精英家教网 > 初中数学 > 题目详情

图中的大、小正方形的边长均为整数(cm),它们面积之和等于74cm2,则阴影三角形的面积等于________cm2

7
分析:根据大、小正方形的边长均为整数,它们面积之和等于74cm2,则可以分析求得两个正方形的边长分别是5cm和7cm,再进一步求得阴影部分的面积即可.
解答:∵大、小正方形的边长均为整数(cm),它们面积之和等于74cm2
∴大正方形的边长是7cm,小正方形的边长是5cm,
∴阴影部分的面积=×(7-5)×7=7(cm2).
故答案为:7.
点评:此题主要是能够根据已知条件把74分成两个完全平方数,即74=25+49.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

三个牧童A,B,C在一块正方形的牧场上看守一群牛,为保证公平合理,他们商量将牧场划分为三块分别看守,划分的原则是:①每个人看守的牧场面积相等;②在每个区域内,各选定一个看守点,并保证在有情况时他们所需走的最大距离(看守点到本区域内最远处的距离)相等.按照这一原则,他们先设计了一种如图1的划分方案:把正方形牧场分成三块全等的长方形,大家分头守在这三个长方形的中心(对角线交点),看守自己的一块牧场.
过了一段时间,牧童B和牧童C又分别提出里新的划分方案.
牧童B的划分方案如图2:三块长方形的面积相等,牧童的位置在三个小长方形的中心.
牧童C的划分方案如图3:把正方形的牧场分成三块长方形,牧童的位置在三个小长方形的中心,并保证在有情况时三个人所需走的最大距离相等.请回答:

(I)长方形的两条对角线是相等且互相平分的吗?
(II)牧童B的划分方案中,哪个牧童在有情况时所需走的最大距离较远?
(III)牧童C的划分方案是否符合他们商量的划分原则?为什么?(提示:在计算时可取正方形边长为2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

三个牧童A,B,C在一块正方形的牧场上看守一群牛,为保证公平合理,他们商量将牧场划分为三块分别看守,划分的原则是:①每个人看守的牧场面积相等;②在每个区域内,各选定一个看守点,并保证在有情况时他们所需走的最大距离(看守点到本区域内最远处的距离)相等.按照这一原则,他们先设计了一种如图1的划分方案:把正方形牧场分成三块全等的长方形,大家分头守在这三个长方形的中心(对角线交点),看守自己的一块牧场.
过了一段时间,牧童B和牧童C又分别提出里新的划分方案.
牧童B的划分方案如图2:三块长方形的面积相等,牧童的位置在三个小长方形的中心.
牧童C的划分方案如图3:把正方形的牧场分成三块长方形,牧童的位置在三个小长方形的中心,并保证在有情况时三个人所需走的最大距离相等.请回答:

(I)长方形的两条对角线是相等且互相平分的吗?
(II)牧童B的划分方案中,哪个牧童在有情况时所需走的最大距离较远?
(III)牧童C的划分方案是否符合他们商量的划分原则?为什么?(提示:在计算时可取正方形边长为2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)图(1)是一个长为2m,宽为2n的矩形,把此矩形沿图中虚线用剪刀均分为四个小长方形,然后按图(2)的形状拼成一个正方形,请问:这两个图形的什么量不变所得的正方形的面积比原矩形的面积多出的阴影部分的面积用含m,n的代数式可表示为______;
(2)由(1)的探索可得出的结论是:在周长一定的矩形中,______时,面积最大;
(3)若矩形的周长为24cm,则当边长为多少时,该图形的面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:河北省中考真题 题型:解答题

图1至图7的正方形霓虹灯广告牌ABCD都是20×20的等距网格(每个小方格的边长均为1个单位长),其对称中心为点O,如图1,有一个边长为6个单位长的正方形EFGH的对称中心也是点O,它以每秒1个单位长的速度由起始位置向外扩大(即点O不动,正方形EFGH经过一秒由6×6扩大为8×8;再经过一秒,由8×8扩大为10×10;……),直到充满正方形ABCD,再以同样的速度逐步缩小到起始时的大小,然后一直不断地以同样速度再扩大、再缩小,另有一个边长为6个单位长的正方形MNPQ从如图1所示的位置开始,以每秒1个单位长的速度,沿正方形ABCD的内侧边缘按A→B→C→D→A移动(即正方形MNPQ从点P与点A重合位置开始,先向左平移,当点Q与点B重合时,再向上平移,当点M与点C重合时,再向右平移,当点N与点D重合时,再向下平移,到达起始位置后仍继续按上述方式移动),正方形EFGH和正方形MNPQ从如图1的位置同时开始运动,设运动时间为x秒,它们的重叠部分面积为y个平方单位。
(1)请你在图2和图3中分别画出x为2秒、18秒时,正方形EFGH和正方形MNPQ的位置及重叠部分(重叠部分用阴影表示),并分别写出重叠部分的面积;
(2)①如图4,当1≤x≤3.5时,求y与x的函数关系式;
②如图5,当3.5≤x≤7时,求y与x的函数关系式;
③如图6,当7≤x≤10.5时,求y与x的函数关系式;
④如图7,当10.5≤x≤13时,求y与x的函数关系式;
(3)对于正方形MNPQ在正方形ABCD各边上移动一周的过程,请你根据重叠部分面积y的变化情况,指出y取得最大值和最小值时,相对应的x的取值情况,并指出最大值和最小值分别是多少。


查看答案和解析>>

同步练习册答案