精英家教网 > 初中数学 > 题目详情

如图,请证明在同一三角形中,等边对等角.

解:如图:已知:在△ABC中,AB=AC,
求证:∠B=∠C.
证明:取BC的中点D,连接AD,
∴BD=CD,
在△ABD和△ACD中,

∴△ABD≌△ACD(SSS),
∴∠B=∠C.
分析:首先根据题意作出图形,将文字题用数学语言表达出来,再取BC的中点D,连接AD,利用SSS的证明方法即可证得△ABD≌△ACD,证得等边对等角.
点评:此题考查了等腰三角形的性质的证明.此题难度不大,解题的关键是注意文字的证明方法,首先画出图形,根据题意写出已知求证,然后证明即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•乐山模拟)如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.

(1)证明:AB•CD=PB•PD.
(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.
(3)已知抛物线与x轴交于点A(-1,0),B(3,0),与y轴交于点(0,-3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2010•路南区三模)如图①,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG,PC.若
BD
AC
=
GE
BF
=
3

(1)请写出线段PG与PC所满足的关系;并加以证明.
(2)若将图①中的菱形BEFG饶点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变,如图②.那么你在(1)中得到的结论是否发生变化?若没变化,直接写出结论,若有变化,写出变化的结果.
(3)若将图①中的菱形BEFG饶点B顺时针旋转任意角度,原问题中的其他条件不变,请猜想(1)中的结论有没有变化?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在等边中△ABC,D、E分别是AB、AC上的点,DE∥BC,如图(1),然后将△ADE绕A点顺时针旋转120°,使B、A、E三点在同一直线上,得到图(2),M、N分别是BD、CE的中点,连接AM、AN、MN得到图(3),请解答下列问题:
(1)在图(2)中,线段BD与线段CE的大小关系是
BD=CE
BD=CE

(2)在图(3)中,△AMN与△ABC是相似三角形吗?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图甲,AB⊥BD,CD⊥BD,AP⊥PC,垂足分别为B、P、D,且三个垂足在同一直线上,我们把这样的图形叫“三垂图”.

(1)证明:AB•CD=PB•PD.
(2)如图乙,也是一个“三垂图”,上述结论成立吗?请说明理由.
(3)已知抛物线与x轴交于点A(-1,0),B(3,0),与y轴交于点(0,-3),顶点为P,如图丙所示,若Q是抛物线上异于A、B、P的点,使得∠QAP=90°,求Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示 ,在等边中,D、E分别是AB、AC上的点,,如图(1),然后将绕A点顺时针旋转,使B、A、E三点在同一直线上,得到图(2),M、N分别是BD、CE的中点,连接AM、AN、MN得到图(3),请解答下列问题:

(1)在图(2)中,线段BD与线段CE的大小关系是                         

(2)在图(3)中,是相似三角形吗?请证明你的结论。

 

查看答案和解析>>

同步练习册答案