
解:(1)直线BD与⊙O相切.
证明:如图1,连接OD.
∵OA=OD,∴∠A=∠ADO.
∵∠C=90°,
∴∠CBD+∠CDB=90°
又∵∠CBD=∠A,
∴∠ADO+∠CDB=90°,
∴∠ODB=180°-(∠ADO+∠CDB)=90°.
∴直线BD与⊙O相切.
(2)连OD、DE.
∵AD=BD,
∴∠A=∠DBA.
在Rt△BDC中,
∵∠C=90°,∠CBD=∠A=∠DBA,
∴3∠A=90°,即有∠A=30°.
由

,得

.
又∠DOE=60°,OD=OE,
∴△DOE为等边三角形,
∴

.
即⊙O的半径

,
故⊙O的面积

.
分析:(1)连接OD.证直线与圆相切,即证BD⊥OD.由∠CBD+∠CDB=90°,∠CBD=∠A=∠ODA,可得∠ODA+∠CDB=90°.根据平角定义得证;(2)即求圆的半径求解.连接DE,则∠ADE=90°.在Rt△BCA中,∠CDB=∠A=∠ABD,得∠A=30°.从而在△ADE中利用三角函数求解.
点评:本题考查了切线的判定,解直角三角形等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.