精英家教网 > 初中数学 > 题目详情

如图,在矩形ABCD中,点E在AD边上,AE>DE,BE=BC,点O是线段CE的中点.
(1)试说明CE平分∠BED;
(2)若AB=3,BC=5,求BO的长;
(3)延长BO交直线AD于点F,连接CF,画出图形,试说明四边形BCFE是菱形.

解:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∴∠BCE=∠DEC,
又∵BE=BC,∴∠BCE=∠BEC.
∴∠BEC=∠DEC,
∴CE平分∠BED;

(2)在Rt△BAE中,AB=3,BE=BC=5,
有勾股定理得:AE=4,
在Rt△CDE中,CD=3,DE=1,
有勾股定理得:EC=
在Rt△BOC中,BC=5,CO=
由勾股定理得:BO==

(3)如图所示:
∵FE∥CB,
∴∠EFO=∠COB,
∵BE=BC,BO⊥CE,
∴EO=CO,
在△FEO和△BCO中,

∴△FEO≌△BCO(AAS),
∴EF=BC,
∴四边形EFCB是平行四边形,
∵EC⊥BF,
∴四边形EFCB是菱形.
分析:(1)根据矩形的性质AD∥BC,所以∠BCE=∠DEC,再根据等腰三角形三线合一的性质求解即可;
(2)利用勾股定理先求出AE、EC的长,在△BCO中根据勾股定理即可求出BO;
(3)根据题意画出图形,首先证明BCEF是平行四边形,再由对角线互相垂直即可证明四边形BCEF是菱形.
点评:本题主要考查了矩形的性质、等腰三角形的性质和勾股定理,以及菱形和平行四边形的判定,熟练掌握并灵活运用是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案