精英家教网 > 初中数学 > 题目详情
方程x2+2kx+k2-2k+1=0的两个实数根x1,x2满足x12+x22=4,则k的值为
 
考点:根与系数的关系
专题:整体思想
分析:由x12+x22=x12+2x1•x2+x22-2x1•x2=(x1+x22-2x1•x2=4,然后根据根与系数的关系即可得到一个关于k的方程,从而求得k的值.
解答:解:∵方程x2+2kx+k2-2k+1=0的两个实数根,
∴△=4k2-4(k2-2k+1)≥0,
解得 k≥
1
2

∵x12+x22=4,
∴x12+x22=x12+2x1•x2+x22-2x1•x2=(x1+x22-2x1•x2=4,
又∵x1+x2=-2k,x1•x2=k2-2k+1,
代入上式有4k2-2(k2-2k+1)=4,
解得k=1或k=-3(不合题意,舍去).
故答案为:1.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-
b
a
,x1•x2=
c
a
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某超市推出两种优惠方法:①购1个水杯,赠送1包茶叶;②购水杯和茶叶一律按9折优惠.水杯每个定价20元,茶叶每包定价5元.小明需买4个水杯,茶叶若干包(不少于4包).
(1)分别写出两种优惠方法购买费用y(元)与所买茶叶包数x(包)之间的函数关系式;
(2)若只选择一种优惠方法,请对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小明需买这种水杯4个和茶叶12包,请你设计怎样购买最经济.

查看答案和解析>>

科目:初中数学 来源: 题型:

为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出
 
个这样的停车位.(
2
≈1.4)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知函数y=2x+b与函数y=kx-3的图象交于点P,则不等式kx-3>2x+b的解集是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如果
3-m
m
=
3-m
m
成立,则实数m的取值范围是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的函数图象,则小明回家的速度是每分钟步行
 
米.

查看答案和解析>>

科目:初中数学 来源: 题型:

雷霆队的杜兰特当选为2013-2014赛季NBA常规赛MVP,下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为(  )
场次12345678
得分3028283823263942
A、29  28
B、28  29
C、28  28
D、28  27

查看答案和解析>>

科目:初中数学 来源: 题型:

我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:
如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得PA+PB最小.
我们只要作点B关于l的对称点B′,(如图2所示)根据对称性可知,PB=PB′.因此,求AP+BP最小就相当于求AP+PB′最小,显然当A、P、B′在一条直线上时AP+PB′最小,因此连接AB′,与直线l的交点,就是要求的点P.
有很多问题都可用类似的方法去思考解决.
探究:
(1)如图3,正方形ABCD的边长为2,E为BC的中点,P是BD上一动点.连结EP,CP,则EP+CP的最小值是
 

(2)如图4,A是锐角MON内部任意一点,在∠MON的两边OM,ON上各求作一点B,C,组成△ABC,使△ABC周长最小;(不写作法,保留作图痕迹)
(3)如图5,平面直角坐标系中有两点A(6,4)、B(4,6),在y轴上找一点C,在x轴上找一点D,使得四边形ABCD的周长最小,则点C的坐标应该是
 
,点D的坐标应该是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
7
×
112

查看答案和解析>>

同步练习册答案