精英家教网 > 初中数学 > 题目详情
20.如图,l3∥l4∥l5,l1交l3,l4,l5于E,A,C,l2交l3,l4,l5于D,A,B,以下结论的错误的为(  )
A.$\frac{EA}{AC}$=$\frac{DA}{AB}$B.$\frac{BA}{BD}$=$\frac{CA}{CE}$C.$\frac{CA}{CE}$=$\frac{DA}{DB}$D.$\frac{EA}{EC}$=$\frac{DA}{DB}$

分析 直接运用平行线分线段成比例定理列出比例式判断即可.

解答 解:∵l3∥l4∥l5
∴$\frac{EA}{AC}=\frac{DA}{AB},\frac{BA}{BD}=\frac{CA}{CE},\frac{EA}{EC}=\frac{DA}{DB}$,
故选C

点评 该题主要考查了平行线分线段成比例定理及其应用问题;运用平行线分线段成比例定理正确写出比例式是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

10.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,-2),则△ABC外接圆的圆心坐标是(3,1).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有(  )
①A、B两地相距60千米;
②出发1小时,货车与小汽车相遇;
③小汽车的速度是货车速度的2倍;
④出发1.5小时,小汽车比货车多行驶了60千米.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,一次函数y=x+2与反比例函数y=$\frac{k}{x}$的图象相交于A(2,m),B(-4,n)两点.
(1)求反比例函数的解析式;
(2)根据所给条件,请直接写出不等式x+2>$\frac{k}{x}$的解集:-4<x<0或x>2;
(3)过点B作BC⊥x轴,垂足为C,连接AC,求S△ABC

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.若x-2y-2=0,则(x-2y)2-$\frac{1}{2}$x+y-1的值为(  )
A.3B.4C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.通过配方,确定抛物线y=ax2+bx+1的顶点坐标及对称轴,其中a=sin30°-tan45°,b=4tan30°•sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.请写出一个比-3大而比-$\frac{1}{3}$小的有理数:-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.
(1)请你判定“抛物线三角形”的形状(不必写出证明过程);
(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;
(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”.请问是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.实数a,b,c,d在数轴上对应点的位置如图所示,这四个数中,绝对值最小的是(  )
A.aB.bC.cD.d

查看答案和解析>>

同步练习册答案