分析 (1)根据已知条件得到DE=EB=EB,∠EGD=∠EGD=∠EDB=∠EBD=45°,进而证得∠AGD=∠FDB=135°,根据三角形内角和证得∠A=∠F,由三角形外角定理证得∠ADG=∠FBD,根据三角形的判定证得△ADG≌△FDB,由全等三角形的判定即可证得结论;
(2)根据已知条件得到△AED≌△FEB,由全等三角形的性质得到AE=EM,即可得到结论.
解答 解:(1)∵DE=EB,EG=EB,DE⊥AB,
∴DE=EB=EG,
∴∠EGD=∠EDG=∠EDB=∠EBD=45°,
∴∠AGD=∠FDB=135°,
∵∠ACB=90°,∠AED=90°,∠ADE=∠FDC,
∴∠A=∠F,
∴∠ADG=∠FBD,
在△ADG和△FDB中$\left\{\begin{array}{l}{∠ADG=∠FBD}\\{DG=DB}\\{∠AGD=∠FDB}\end{array}\right.$
∴△ADG≌△FDB,
∴AG=DF;
(2)∵DE=EB,EG=EB,
∴DE=EB=EG,∵DE⊥AB,
在△AED和△FEB中,$\left\{\begin{array}{l}{∠A=∠M}\\{∠AED=∠MEG}\\{ED=EG}\end{array}\right.$
∴△AED≌△MEB,
∴AE=EM,
∴AE+EB=EM+DE,
即AB=DM.
点评 本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com