精英家教网 > 初中数学 > 题目详情

已知关于x的方程数学公式=数学公式的解为x=2,其中m≠0,n≠0,求代数式数学公式的值.

解:方程=的左右同乘6可得:3(m-x)=2(nx-3),
∴3m-6=4n-6,

分析:此题可将x=2代入方程,得出关于m、n的二元一次方程,解方程即可得出m与n的关系式.
点评:此题考查的是一元一次方程的解法,将已知的x的值代入,然后解方程得出m与n的关系式即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于的方程x2+ax+b=0(b≠0)与x2+cx+d=0都有实数根,若这两个方程有且只有一个公共根,且ab=cd,则称它们互为“同根轮换方程”.如x2-x-6=0与x2-2x-3=0互为“同根轮换方程”.
(1)若关于x的方程x2+4x+m=0与x2-6x+n=0互为“同根轮换方程”,求m的值;
(2)若p是关于x的方程x2+ax+b=0(b≠0)的实数根,q是关于x的方程x2+2ax+
1
2
b=0
的实数根,当p、q分别取何值时,方程x2+ax+b=0(b≠0)与x2+2ax+
1
2
b=0
互为“同根轮换方程”,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年北京市平谷九年级上学期期末考试数学试卷(解析版) 题型:解答题

已知关于x的方程

(1)当k取何值时,方程有两个实数根;

(2)若二次函数的图象与轴两个交点的横坐标均为整数,且k为正整数,求k值并用配方法求出抛物线的顶点坐标;

(3)若(2)中的抛物线与x轴交于A、B两点,与y轴交于C点.将抛物线向上平移n个单位,使平移后得到的抛物线的顶点落在△ABC的内部(不包括△ABC的边界),写出n的取值范围.

 

查看答案和解析>>

科目:初中数学 来源:2008-2009学年江苏省无锡市江阴市周庄中学九年级(上)第一次段考数学试卷(解析版) 题型:解答题

已知关于x的方程x2-2(k+1)x+k2+2k-1=0  ①
(1)试判断方程①的根的情况;
(2)如果a是关于y的方程y2-(x1+x2-2k)y+(x1-k)(x2-k)=0②的根,其中x1,x2为方程①的两个实数根,求代数式的值.

查看答案和解析>>

科目:初中数学 来源:《第23章 一元二次方程》2009年单元测试卷(解析版) 题型:解答题

已知关于x的方程(k-1)x2+(2k-3)x+k+1=0有两个不相等的实数根x1,x2
(1)求k的取值范围;
(2)是否存在实数k,使方程的两实数根互为相反数?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)根据题意,得
△=(2k-3)2-4(k-1)(k+1)
=4k2-12k+9-4k2+4
=-12k+13>0.
∴k<
∴当k<时,方程有两个不相等的实数根.
(2)存在.如果方程的两个实数根互为相反数,则x1+x2==0,解得k=
检验知k==0的解.
所以当k=时,方程的两实数根x1,x2互为相反数.
当你读了上面的解答过程后,请判断是否有错误?如果有,请指出错误之处,直接写出正确的答案.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《一元二次方程》(03)(解析版) 题型:解答题

(2001•北京)已知关于x的方程x2-2(k+1)x+k2+2k-1=0  ①
(1)试判断方程①的根的情况;
(2)如果a是关于y的方程y2-(x1+x2-2k)y+(x1-k)(x2-k)=0②的根,其中x1,x2为方程①的两个实数根,求代数式的值.

查看答案和解析>>

同步练习册答案