精英家教网 > 初中数学 > 题目详情
证明题:
如图,已知AB=AD,AE=AC,∠DAC=∠BAE,
求证:DE=BC.
分析:求出∠DAE=∠BAC,根据SAS证△DAE≌△BAC,根据全等三角形的性质即可求出答案.
解答:证明:∵∠DAC=∠BAE,
∴∠DAC+∠CAE=∠BAE+∠CAE,
即∠DAE=∠BAC,
∵在△DAE和△BAC中
AD=AB
∠DAE=∠BAC
AC=AE

∴△DAE≌△BAC,
∴DE=BC.
点评:本题考查了全等三角形的性质和判定的应用,主要考查学生运用性质进行推理的能力,题目比较典型,难度不大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

附加题:如图,已知四边形ABCD是边长为2的正方形,以对角线BD为边作正三角形BDE,过E作DA精英家教网的延长线的垂线EF,垂足为F.
(1)找出图中与EF相等的线段,并证明你的结论;
(2)求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(A题)某市经济开发区建有B、C、D三个食品加工厂,这三个工厂和开发区A处的自来水厂正好在一个矩形的四个顶点上,它们之间有公路相通,且AB=CD=900米,AD=BC=1700米.自来水公司已经修好一条自来水主管道AN,BC两厂之间的公路与自来水管道交于E处,EC=500米.若自来水主管道到各工厂的自来水管道由各厂负担,每米造价800元.
(1)要使修建自来水管道的造价最低,这三个工厂的自来水管道路线应怎样设计并在图形中画出;
(2)求出各厂所修建的自来水管道的最低的造价各是多少元?

(B题)如图,已知平行四边形ABCD及四边形外一直线l,四个顶点A、B、C、D到直线l的距离分别为a、b、c、d.
(1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论.
(2)现将l向上平移,你得到的结论还一定成立吗?请分情况写出你的结论.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

23、观察探索题:
如图,已知三角形ABC,延长BC到D,过点C作CE∥AB.由于AB∥CE,所以可得到∠B=∠3和∠A=∠2.又因为∠1+∠2+∠3组成一个平角为180°,通过等量代换可以得到三角形ABC的三个内角的和为180°,即∠A+∠B+∠ACB=180°.
试根据以上叙述,写出已知、求证及说明∠A+∠B+∠ACB=180°的过程.
已知:延长三角形ABC的边BC到D,过C作CE∥AB.
求证:∠A+∠B+∠ACB=180°
证明:

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

证明题:
如图,已知AB=AD,AE=AC,∠DAC=∠BAE,
求证:DE=BC.

查看答案和解析>>

同步练习册答案