精英家教网 > 初中数学 > 题目详情
已知正方形ABCD的边长为2,点E、F均在直线BD上,且∠EAF=135°,EB:DF=1:2.
(1)求CF;
(2)在直线BD上是否存在点P,使A、E、P三点围成的三角形是直角三角形?若存在求出EP的长,不存在请说明理由.
精英家教网
分析:(1)根据正方形的性质,得到对应边相等且对角线平分正方形的内角,进而由“SAS”得到△ADF≌△CDF,得到AF=CF,然后根据等量代换得到∠DAF=∠AEB,由等角的补角相等得到∠ABE=∠ADF=135°,进而得到△AEB∽△FAD,得到一个比例式,设EB=x,则DF=2x,且正方形边长为2,代入比例式中求出x的值,确定出DF的长,连接AC,由正方形的性质可知AC⊥BD,O为BD中点,求出OA以及OF的长,利用勾股定理即可求出AF的长,即CF的长;
(2)存在.有两解:第一,当P与O重合时,EO即为EP的长,根据(1)求出的EB和OB的长求出EP即可;第二,当AP⊥AE,与BD交于点P,此时△AEP为直角三角形,根据题意画出图形,由两对角相等的两三角形相似得到△AEO∽△PEA,由相似三角形对应边成比例列出比例式,由AE和EO的长即可求出PE.
解答:解:(1)∵正方形ABCD,
∴AD=DC,∠ADB=∠CDB=45°,即∠ADF=∠CDF=135°,
在△ADF和△CDF中,
AD=CD
∠ADF=∠CDF
DF=DF

∴△ADF≌△CDF(SAS),
∴AF=CF,
又∠EAF=∠EAB+∠BAD+∠DAF=135°,且∠BAD=90°,
∴∠EAB+∠DAF=45°,而∠ABD=∠EAB+∠AEB=45°,
∴∠DAF=∠AEB,∠ABE=∠ADF=135°,
∴△AEB∽△FAD,
设EB=x,则DF=2x,AB=AD=2,
x
2
=
2
2x
,解得x=
2
,则DF=2
2

连接AC交BD与O,由正方形ABCD,得到AC⊥BD,O为BD中点,
∴OD=OA=
2
,则OF=OD+DF=3
2

在直角三角形OAF中,根据勾股定理得:
AF2=AO2+OF2=2+18=20,解得AF=2
5
,则CF=2
5


(2)存在.
当P与(1)中的正方形中心O重合时,△AEP为直角三角形,
由(1)得到OB=BE=
2
,∴EP=2
2

过A作AP⊥AE,与BD交于点P,此时△AEP为直角三角形,
根据题意画出图形,如图所示:
精英家教网
由题意可知:∠PAE=∠AOE=90°,∠AOE=∠PEA,
∴△AEO∽△PEA,∴AE2=EO•EP,
AE=
EO2+AO2
=
10
,EO=2
2

则EP=
10
2
2
=
5
2
2

EP的长为2
2
5
2
2
点评:此题综合考查了正方形的性质,相似三角形的判定与性质以及勾股定理.学生在作第二问时注意结合图形,由相似得比例,进而找出已知与未知的关系,锻炼了学生分析问题,解决问题的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边长为12cm,E为CD边上一点,DE=5cm.以点A为中心,将△ADE按顺时针方向旋转得△ABF,则点E所经过的路径长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正方形ABCD的边长为6,以D为圆心,DA为半径在正方形内作弧AC,E是AB边上动点(与点A、B不重精英家教网合),过点E作弧AC的切线,交BC于点F,G为切点,⊙O是△EBF的内切圆,分别切EB、BF、FE于点P、J、H
(1)求证:△ADE∽△PEO;
(2)设AE=x,⊙O的半径为y,求y关于x的解析式,并写出定义域;
(3)当⊙O的半径为1时,求CF的长;
(4)当点E在移动时,图中哪些线段与线段EP始终保持相等,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•同安区质检)如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.
(1)求证:△ADE≌△CDF;
(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•香洲区一模)如图,已知正方形ABCD的边长为28,动点P从A开始在线段AD上以每秒3个单位长度的速度向点D运动(点P到达点D时终止运动),动直线EF从AD开始以每秒1个单位长度的速度向下平行移动(即EF∥AD),并且分别与DC、AC交于E、F两点,连接FP,设动点P与动直线EF同时出发,运动时间为t 秒.
(1)t为何值时,梯形DPFE的面积最大?最大面积是多少?
(2)当梯形DPFE的面积等于△APF的面积时,求线段PF的长.
(3)△DPF能否为一个等腰三角形?若能,试求出所有的t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的边长为8cm,点E、F分别在边BC、CD上,∠EAF=45°.当EF=8cm时,△AEF的面积是
32
32
cm2;当EF=7cm时,△EFC的面积是
8
8
cm2

查看答案和解析>>

同步练习册答案