ÒÑÖªÈçͼ£¬¶þ´Îº¯Êýy=ax2+2ax-3a£¨a¡Ù0£©Í¼ÏóµÄ¶¥µãΪH£¬ÓëxÖá½»ÓÚA¡¢BÁ½µã£¨BÔÚAµãÓҲࣩ£¬µãH¡¢B¹ØÓÚÖ±Ïßl£ºy=
3
3
x+
3
¶Ô³Æ£®
£¨1£©ÇóA¡¢BÁ½µã×ø±ê£¬²¢Ö¤Ã÷µãAÔÚÖ±ÏßlÉÏ£»
£¨2£©Çó¶þ´Îº¯Êý½âÎöʽ£»
£¨3£©ÉèµãsÊÇÈý½ÇÐÎABHÉϵÄÒ»¶¯µã£¬´ÓµãAÑØ×ÅAHB·½ÏòÒÔÿÃë1¸öµ¥Î»³¤¶ÈÒƶ¯£¬Ô˶¯Ê±¼äΪtÃ룬µ½´ïµãBʱֹͣÔ˶¯£®µ±tΪºÎֵʱ£¬ÒÔµãsΪԲÐĵÄÔ²ÓëÁ½×ø±êÖᶼÏàÇУ®
£¨4£©¹ýµãB×÷Ö±ÏßBK¡ÎAH½»Ö±ÏßlÓÚKµã£¬M¡¢N·Ö±ðΪֱÏßAHºÍÖ±ÏßlÉϵÄÁ½¸ö¶¯µã£¬Á¬½ÓHN¡¢NM¡¢MK£¬ÇóHN+NM+MKºÍµÄ×îСֵ£®
·ÖÎö£º£¨1£©Çó³ö·½³Ìax2+2ax-3a=0£¨a¡Ù0£©£¬¼´¿ÉµÃµ½Aµã×ø±êºÍBµã×ø±ê£»°ÑAµÄ×ø±ê´úÈëÖ±Ïßl¼´¿ÉÅжÏAÊÇ·ñÔÚÖ±ÏßÉÏ£»
£¨2£©¸ù¾ÝµãH¡¢B¹ØÓÚ¹ýAµãµÄÖ±Ïßl£ºy=
3
3
x+
3
¶Ô³Æ£¬µÃ³öAH=AB=4£¬¹ý¶¥µãH×÷HC¡ÍAB½»ABÓÚCµã£¬Çó³öACºÍHCµÄ³¤£¬µÃ³ö¶¥µãHµÄ×ø±ê£¬´úÈë¶þ´Îº¯Êý½âÎöʽ£¬Çó³öa£¬¼´¿ÉµÃµ½¶þ´Îº¯Êý½âÎöʽ£»
£¨3£©Ê×ÏÈÅж¨¡÷ABHÊǵȱßÈý½ÇÐΣ¬½ø¶ø¹¹ÔìÖ±½ÇÈý½ÇÐεóötµÄÖµ¼´¿É£»
£¨4£©µÃ³öÖ±ÏßAH£¬BKµÄ½âÎöʽ£¬µÃµ½·½³Ì×é
y=
3
3
x+
3
y=
3
x-
3
£¬¼´¿ÉÇó³öKµÄ×ø±ê£¬¸ù¾ÝµãH¡¢B¹ØÓÚÖ±ÏßAK¶Ô³Æ£¬µÃ³öHN+MNµÄ×îСֵÊÇMB£¬¹ýµãK×÷Ö±ÏßAHµÄ¶Ô³ÆµãQ£¬Á¬½ÓQK£¬½»Ö±ÏßAHÓÚE£¬µÃµ½BM+MKµÄ×îСֵÊÇBQ£¬¼´BQµÄ³¤ÊÇHN+NM+MKµÄ×îСֵ£¬Óɹ´¹É¶¨ÀíµÃQB=8£¬¼´¿ÉµÃ³ö´ð°¸£®
½â´ð£º½â£º£¨1£©ÒÀÌâÒ⣬µÃax2+2ax-3a=0£¨a¡Ù0£©£¬
¼´x2+2x-3=0£¬
½âµÃx1=-3£¬x2=1£¬
¡ßBµãÔÚAµãÓҲ࣬
¡àAµã×ø±êΪ£¨-3£¬0£©£¬Bµã×ø±êΪ£¨1£¬0£©£¬
´ð£ºA¡¢BÁ½µã×ø±ê·Ö±ðÊÇ£¨-3£¬0£©£¬£¨1£¬0£©£®

¡ßÖ±Ïßl£ºy=
3
3
x+
3
£¬
µ±x=-3ʱ£¬y=
3
3
¡Á£¨-3£©+
3
=0£¬
¡àµãAÔÚÖ±ÏßlÉÏ£®

£¨2£©¡ßµãH¡¢B¹ØÓÚ¹ýAµãµÄÖ±Ïßl£ºy=
3
3
x+
3
¶Ô³Æ£¬
¡àAH=AB=4£¬
Èçͼ1£¬¹ý¶¥µãH×÷HC¡ÍAB½»ABÓÚCµã£¬
ÔòAC=
1
2
AB=2£¬HC=2
3
£¬
¡à¶¥µãH£¨-1£¬2
3
£©£¬
´úÈë¶þ´Îº¯Êý½âÎöʽ£¬½âµÃa=-
3
2
£¬
¡à¶þ´Îº¯Êý½âÎöʽΪy=-
3
2
x2-
3
x+
3
3
2
£¬
´ð£º¶þ´Îº¯Êý½âÎöʽΪy=-
3
2
x2-
3
x+
3
3
2
£¬

£¨3£©¡ßAµã×ø±êΪ£¨-3£¬0£©£¬µãH£¨-1£¬2
3
£©£¬
¡àAH=
22+(2
3
)2
=4£¬
¡ßBµã×ø±êΪ£¨1£¬0£©£¬µãH£¨-1£¬2
3
£©£¬
¡àBH=
22+(2
3
)2
=4£¬
¡ßAµã×ø±êΪ£¨-3£¬0£©£¬Bµã×ø±êΪ£¨1£¬0£©£¬
¡àAB=4£¬¼´AB=AH=BH=4£¬
¡à¡÷ABHÊǵȱßÈý½ÇÐΣ¬
Èçͼ2£¬¹ýµãS×÷SC¡ÍABÓÚµãC£¬¹ýµãS1×÷S1E¡ÍABÓÚµãE£¬
Éèµ±tÃëʱ£¬ÒÔµãsΪԲÐĵÄÔ²ÓëÁ½×ø±êÖᶼÏàÇУ®
ÔòAS=t£¬AC=
1
2
t£¬SC=
3
2
t£¬
´ËʱSC=CO£¬
¼´
3
2
t=3-
1
2
t£¬
½âµÃ£ºt=3£¨
3
-1£©£¬
ͬÀí¿ÉµÃ£ºS1B=AH+HB-t=8-t£¬BE=
8-t
2
£¬S1E=
3
(8-t)
2
£¬
µ±EO=S1E£¬
¼´1-
8-t
2
=
3
(8-t)
2
£¬
½âµÃ£ºt=9-
3
£¬
¹Êµ±t=3£¨
3
-1£©»òt=9-
3
ʱ£¬ÒÔµãsΪԲÐĵÄÔ²ÓëÁ½×ø±êÖᶼÏàÇУ®

£¨4£©¡ßAµã×ø±êΪ£¨-3£¬0£©£¬µãH£¨-1£¬2
3
£©£¬
¡à½«Á½µã´úÈë½âÎöʽy=kx+b£¬
µÃ³ö
-3k+b=0
-k+b=2
3
£¬
½âµÃ£º
k=
3
b=3
3
£¬
¹ÊÖ±ÏßAHµÄ½âÎöʽΪy=
3
x+3
3
£¬
¡ßÖ±ÏßBK¡ÎAH½»Ö±ÏßlÓÚKµã£¬
¡àÖ±ÏßBKµÄ½âÎöʽΪ£ºy=
3
x+b£¬
½«Bµã×ø±ê´úÈëÇó³ö£¬
Ö±ÏßBKµÄ½âÎöʽΪ£ºy=
3
x-
3
£¬
ÓÉ
y=
3
3
x+
3
y=
3
x-
3
£¬
½âµÃ
x=3
y=2
3
£¬
¼´K£¨3£¬2
3
£©£¬
ÔòBK=4£¬
¡ßµãH¡¢B¹ØÓÚÖ±ÏßAK¶Ô³Æ£¬K£¨3£¬2
3
£©£¬
¡àHN+MNµÄ×îСֵÊÇMB£¬KD=KE=2
3
£¬
Èçͼ3£¬¹ýµãK×÷Ö±ÏßAHµÄ¶Ô³ÆµãQ£¬Á¬½ÓQK£¬½»Ö±ÏßAHÓÚE£¬KD=KE=2
3
£¬
ÔòQM=MK£¬QE=EK=2
3
£¬AE¡ÍQK£¬
¡àBM+MKµÄ×îСֵÊÇBQ£¬¼´BQµÄ³¤ÊÇHN+NM+MKµÄ×îСֵ£¬
¡ßBK¡ÎAH£¬
¡à¡ÏBKQ=¡ÏHEQ=90¡ã£¬
Óɹ´¹É¶¨ÀíµÃQB=8£¬
¡àHN+NM+MKµÄ×îСֵΪ8£¬
´ð£ºHN+NM+MKºÍµÄ×îСֵÊÇ8£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˶Թ´¹É¶¨Àí£¬½â¶þÔªÒ»´Î·½³Ì×飬¶þ´Îº¯ÊýÓëÒ»Ôª¶þ´Î·½³Ì£¬¶þ´Îº¯ÊýÓëXÖáµÄ½»µã£¬Óôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽµÈ֪ʶµãµÄÀí½âºÍÕÆÎÕ£¬×ÛºÏÔËÓÃÕâЩÐÔÖʽøÐмÆËãÊǽâ´ËÌâµÄ¹Ø¼ü£¬´ËÌâÊÇÒ»¸ö×ÛºÏÐԱȽÏÇ¿µÄÌâÄ¿£¬ÓÐÒ»¶¨µÄÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

16¡¢ÒÑÖªÈçͼ£¬¶þ´Îº¯Êýy=ax2+bx+cµÄͼÏó¹ýA¡¢B¡¢CÈýµã
£¨1£©¹Û²ìͼÏóд³öA¡¢B¡¢CÈýµãµÄ×ø±ê£»
£¨2£©Çó³ö¶þ´Îº¯ÊýµÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÈçͼ£¬¶þ´Îº¯Êýy=ax2+2ax-3a£¨a¡Ù0£©Í¼ÏóµÄ¶¥µãΪH£¬ÓëxÖá½»ÓÚA¡¢BÁ½µã£¨BÔÚAµãÓҲࣩ£¬µãH¡¢B¹ØÓÚÖ±Ïßl£ºÊýѧ¹«Ê½¶Ô³Æ£®
£¨1£©ÇóA¡¢BÁ½µã×ø±ê£¬²¢Ö¤Ã÷µãAÔÚÖ±ÏßlÉÏ£»
£¨2£©Çó¶þ´Îº¯Êý½âÎöʽ£»
£¨3£©ÉèµãsÊÇÈý½ÇÐÎABHÉϵÄÒ»¶¯µã£¬´ÓµãAÑØ×ÅAHB·½ÏòÒÔÿÃë1¸öµ¥Î»³¤¶ÈÒƶ¯£¬Ô˶¯Ê±¼äΪtÃ룬µ½´ïµãBʱֹͣÔ˶¯£®µ±tΪºÎֵʱ£¬ÒÔµãsΪԲÐĵÄÔ²ÓëÁ½×ø±êÖᶼÏàÇУ®
£¨4£©¹ýµãB×÷Ö±ÏßBK¡ÎAH½»Ö±ÏßlÓÚKµã£¬M¡¢N·Ö±ðΪֱÏßAHºÍÖ±ÏßlÉϵÄÁ½¸ö¶¯µã£¬Á¬½ÓHN¡¢NM¡¢MK£¬ÇóHN+NM+MKºÍµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÈçͼ£¬¶þ´Îº¯Êýy="ax2" +bx+cµÄͼÏñ¹ýA¡¢B¡¢CÈýµã

¹Û²ìͼÏñд³öA¡¢B¡¢CÈýµãµÄ×ø±ê
Çó³ö¶þ´Îº¯ÊýµÄ½âÎöʽ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2010-2011ѧÄê±±¾©Êк£µíÇø³õÈýһģÊýѧÊÔÌâ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÈçͼ£¬¶þ´Îº¯Êýy=ax2 +bx+cµÄͼÏñ¹ýA¡¢B¡¢CÈýµã

¹Û²ìͼÏñд³öA¡¢B¡¢CÈýµãµÄ×ø±ê

Çó³ö¶þ´Îº¯ÊýµÄ½âÎöʽ

 

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸