如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.
![]()
(1)求出抛物线C1的解析式,并写出点G的坐标;
(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:
(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.
科目:初中数学 来源:人教版数学九年级上册_第23章_旋转_单元检测试卷 题型:单选题
成中心对称的两个图形,下列说法正确的是( )
①一定形状相同;②大小可能不等;③对称中心必在图形上;④对称中心可能只在一个图形上;⑤对称中心必在对应点的连线上.
A. ①③ B. ③④ C. ④⑤ D. ①⑤
查看答案和解析>>
科目:初中数学 来源:人教版初中数学九年级上册 第二十二章 二次函数压轴专题试卷 题型:解答题
将抛物线C1:y=﹣
x2+
沿x轴翻折,得到抛物线C2,如图所示
(1)请直接写出抛物线C2的解析式
(2)现将抛物线C1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.
①当B、D是线段AE的三等分点时,求m的值;
②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由
![]()
查看答案和解析>>
科目:初中数学 来源:人教版初中数学九年级上册 第二十二章 二次函数压轴专题试卷 题型:解答题
小贤与小杰在探究某类二次函数问题时,经历了如下过程:
求解体验
(1)已知抛物线
经过点(-1,0),则= ,顶点坐标为 ,该抛物线关于点(0,1)成中心对称的抛物线的表达式是 .![]()
抽象感悟
我们定义:对于抛物线
,以轴上的点![]()
为中心,作该抛物线关于![]()
点对称的抛物线![]()
,则我们又称抛物线![]()
为抛物线![]()
的“衍生抛物线”,点![]()
为“衍生中心”.![]()
(2)已知抛物线
关于点的衍生抛物线为![]()
,若这两条抛物线有交点,求![]()
的取值范围.![]()
问题解决
(3) 已知抛物线![]()
①若抛物线的衍生抛物线为![]()
,两抛物线有两个交点,且恰好是它们的顶点,求的值及衍生中心的坐标;![]()
②若抛物线关于点![]()
的衍生抛物线为
,其顶点为
;关于点
的衍生抛物线为
,其顶点为
;…;关于点
的衍生抛物线为
,其顶点为
;…(为![]()
正整数).求
的长(用含的式子表示).![]()
![]()
查看答案和解析>>
科目:初中数学 来源:人教版数学七年级上册_第四章_几何图形初步_单元测试 题型:解答题
如图,己知
,过点作直线![]()
,作![]()
于点![]()
.![]()
图中除了直角相等外,再找出一对相等的角,并证明它们相等;![]()
若![]()
,求的度数;![]()
将直线![]()
绕点![]()
旋转,若在旋转过程中,![]()
所在的直线平分![]()
,求此时![]()
的度数.![]()
![]()
查看答案和解析>>
科目:初中数学 来源:人教版数学七年级上册_第四章_几何图形初步_单元测试 题型:单选题
利用一副三角板上已知度数的角,不能画出的角是 ( )
A. 15° B. 135° C. 165° D. 100°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com