精英家教网 > 初中数学 > 题目详情

如图,△ABC内接于⊙O,OC和AB相交于点E,点D在OC的延长线上,且∠B=∠D=∠BAC=30°.

(1)试判断直线AD与⊙O的位置关系,并说明理由;

(2)AB=,求⊙O的半径.

 

【答案】

解:(1)直线AD与⊙O相切。理由如下:

如图,连接OA,

∵∠B=30°,∴∠AOC=2∠B=60°。

又∵∠D=30°,∴∠OAD=180°﹣∠AOD﹣∠D=90°。

∴OA⊥AD。

∵OA为半径,∴AD是⊙O的切线。

(2)∵OA=OC,∠AOC=60°,∴△ACO是等边三角形。

∴∠ACO=60°,AC=OA。∴∠AEC=180°﹣∠EAC﹣∠ACE=90°。∴OC⊥AB,

又∵OC是⊙O的半径,∴AE=AB=

在Rt△ACE中,,∴⊙O的半径为6。

【解析】

试题分析:(1)连接OA,求出∠AOC=2∠B=60°,根据三角形内角和定理求出∠OAD,根据切线判定推出即可。

(2)求出∠AEC=90°,根据垂径定理求出AE,根据锐角三角函数的定义即可求出AC,根据等边三角形的性质推出即可。 

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案