如图,△ABC内接于⊙O,OC和AB相交于点E,点D在OC的延长线上,且∠B=∠D=∠BAC=30°.
![]()
(1)试判断直线AD与⊙O的位置关系,并说明理由;
(2)AB=
,求⊙O的半径.
解:(1)直线AD与⊙O相切。理由如下:
如图,连接OA,
![]()
∵∠B=30°,∴∠AOC=2∠B=60°。
又∵∠D=30°,∴∠OAD=180°﹣∠AOD﹣∠D=90°。
∴OA⊥AD。
∵OA为半径,∴AD是⊙O的切线。
(2)∵OA=OC,∠AOC=60°,∴△ACO是等边三角形。
∴∠ACO=60°,AC=OA。∴∠AEC=180°﹣∠EAC﹣∠ACE=90°。∴OC⊥AB,
又∵OC是⊙O的半径,∴AE=
AB=
。
在Rt△ACE中,
,∴⊙O的半径为6。
【解析】
试题分析:(1)连接OA,求出∠AOC=2∠B=60°,根据三角形内角和定理求出∠OAD,根据切线判定推出即可。
(2)求出∠AEC=90°,根据垂径定理求出AE,根据锐角三角函数的定义即可求出AC,根据等边三角形的性质推出即可。
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com