精英家教网 > 初中数学 > 题目详情

如图,正方形ABCD中,E,F分别为AD,DC的中点,BF,CE相交于点M,
求证:AM=AB.

证明:分别延长BA,CE交于N点,
∵四边形ABCD是正方形,
∴AD=CD=AB=CD,∠D=∠BCF=90°,AB∥CD,
∵E是AD中点,F是CD中点,
∴DE=CF,
在△BCF和△CDE中,

∴△BCF≌△CDE(SAS),
∴∠CBF=∠DCE,
∴∠CBF+∠BCM=∠DCE+∠BCM=90°,
∵E是AD的中点,AN∥CD,
∴AE=DE,∠N=∠ECD,∠NAE=∠CDE,
在△ANE和△DCE中,

∴△ANE≌△DCE(AAS),
∴AN=CD,
∴AN=AB,
在Rt△BMN中,AM=BN,
∴AM=AB.
分析:首先分别延长BA,CE交于N点,由正方形ABCD中,E,F分别为AD,DC的中点,易证得△BCF≌△CDE,可得BF⊥CE,又可证得△ANE≌△DCE,即可得AN=AB,然后由直角三角形中斜边上的中线等于斜边的一半,证得AM=AB.
点评:此题考查了正方形的性质、全等三角形的判定与性质以及直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案