精英家教网 > 初中数学 > 题目详情

如图,过双曲线数学公式上的点A作AC⊥x轴于C,OA的垂直平分线交OC于点B,若∠AOC=30°.则△ABC的周长为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    2+数学公式
  4. D.
    3
A
分析:根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC,设OC=a,AC=b,根据题干条件可得到关于a、b的方程组,解之即可求出△ABC的周长.
解答:∵OA的垂直平分线交OC于B,
∴AB=OB,
∴△ABC的周长=OC+AC,
设OC=a,AC=b,
则:
解得a=3,b=
即△ABC的周长=OC+AC=3+
故选A.
点评:本题考查反比例函数图象性质和线段中垂线性质,关键是一个转换思想,即把求△ABC的周长转换成求OC+AC即可解决问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点,A(4,12)为双曲线y=
k
x
(x>0)上的一点.
(1)求k的值;
(2)过双曲线上的点P作PB⊥x轴于B,连接OP,若Rt△OPB两直角边的比值为
1
4
,试求点P的坐标;
(3)分别过双曲线上的两点P1、P2,作P1B1⊥x轴于B1,P2B2⊥x轴于B2,连接精英家教网OP1、OP2.设Rt△OP1B1、Rt△OP2B2的周长分别为l1、l2,内切圆的半径分别为r1、r2,若
l1
l2
=2
,试求
r1
r2
的值.

查看答案和解析>>

科目:初中数学 来源:第20章《二次函数和反比例函数》中考题集(73):20.7 反比例函数的图象、性质和应用(解析版) 题型:解答题

如图,在直角坐标系中,O为原点,A(4,12)为双曲线(x>0)上的一点.
(1)求k的值;
(2)过双曲线上的点P作PB⊥x轴于B,连接OP,若Rt△OPB两直角边的比值为,试求点P的坐标;
(3)分别过双曲线上的两点P1、P2,作P1B1⊥x轴于B1,P2B2⊥x轴于B2,连接OP1、OP2.设Rt△OP1B1、Rt△OP2B2的周长分别为l1、l2,内切圆的半径分别为r1、r2,若,试求的值.

查看答案和解析>>

科目:初中数学 来源:第23章《二次函数与反比例函数》中考题集(72):23.6 反比例函数(解析版) 题型:解答题

如图,在直角坐标系中,O为原点,A(4,12)为双曲线(x>0)上的一点.
(1)求k的值;
(2)过双曲线上的点P作PB⊥x轴于B,连接OP,若Rt△OPB两直角边的比值为,试求点P的坐标;
(3)分别过双曲线上的两点P1、P2,作P1B1⊥x轴于B1,P2B2⊥x轴于B2,连接OP1、OP2.设Rt△OP1B1、Rt△OP2B2的周长分别为l1、l2,内切圆的半径分别为r1、r2,若,试求的值.

查看答案和解析>>

科目:初中数学 来源:2013年福建省南平市中考适应性考试数学试卷(解析版) 题型:选择题

如图,过双曲线上的点A作AC⊥x轴于C,OA的垂直平分线交OC于点B,若∠AOC=30°.则△ABC的周长为( )

A.
B.
C.2+
D.3

查看答案和解析>>

同步练习册答案