精英家教网 > 初中数学 > 题目详情

如图①,正方形ABCD中,∠FOE=90°,顶点O与D点重合,交直线BC于E,交直线BA于F.
(1)求证:OF=OE;
(2)如图②,若O点在射线BD上运动,其它条件不变,上述结论是否仍然成立?画出图形,直接写出结论;
(3)如图③,O为正方形ABCD对角线的中点,∠FOE=90°且绕点O旋转,交BC、CD边于F、E点.(1)中的结论是否仍然成立?请说明理由.

解:(1)∵∠EDC=∠FDA,∠C=∠FAD,OC=OA,
∴△OEC≌△OFA,
∴OF=OE.

(2)OF=OE仍然成立.
如图:作OH⊥AF,OG⊥EC,
根据旋转不变性可知,∠FOH=∠EOG,
易得,OH=OG,
又∵∠FHO=∠GEO,
∴△FHO≌△EGO,
∴OF=OE.

(3)作OM⊥BC于M,ON⊥CD于N,
∴∠OMF=∠ONE,OM=ON=CD,∠MOF=∠NOE=90°-∠FON,
∴△OMF≌△ONE,
∴OF=OE.
分析:(1)由于旋转后角不变,根据ASA证明;
(2)证明方法同(1);
(3)作辅助线构造直角三角形.
点评:此题利用了角的旋转不变性,无论怎样转,直角三角形的度数不变,可以以此利用三角形全等来证明.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图,在正方形网格上的一个△ABC.(其中点A、B、C均在网格上)
(1)作△ABC关于直线MN的轴对称图形;
(2)以P点为一个顶点作一个与△ABC全等的三角形(规定点P与点B对应,另两顶点都在图中网格交点处).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•安庆一模)如图,等腰直角△ABC沿MN所在的直线以2cm/min的速度向右作匀速运动.如果MN=2AC=4cm,那么△ABC和正方形XYMN重叠部分的面积S(cm2)与匀速运动所用时间t(min)之间的函数的大致图象是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.如果AB=AC,∠BAC=90°.
解答下列问题:
(1)当点D在线段BC上时(与点B不重合),如图甲,线段CF、BD之间的位置关系为
垂直
垂直
,数量关系为
相等
相等

(2)当点D在线段BC的延长线上时,如图乙,①中的结论是否仍然成立,为什么?(要求写出证明过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,以Rt△ABC的斜边和一直角边为边长向外作正方形,面积分别为169和25,则另一直角边的长度BC为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形网格上有一个△ABC.
(1)利用网格画出AC边上的中线BD(不写画法,写出结论,下同);
(2)利用网格画出△ABC边BC上的高;
(3)用直尺和圆规在右边方框中作一个△A′B′C′与△ABC全等.

查看答案和解析>>

同步练习册答案