精英家教网 > 初中数学 > 题目详情
14.已知关于x的方程x2+ax+b+1=0的解为x1=x2=2,则a+b的值为(  )
A.-3B.-1C.1D.7

分析 由根与系数的关系可知:x1+x2=-a=-4,x1x2=b+1=4,进一步求得a、b即可.

解答 解:∵x1=x2=2都是方程x2+ax+b+1=0的根,
∴x1+x2=-a=4,x1x2=b+1=4,
∴a=-4,b=3,
∴a+b=-1
故选B.

点评 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-$\frac{b}{a}$,x1•x2=$\frac{c}{a}$.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.如图,点P为△ABC的边AB上的一点,连结PC,若∠1=∠B.
(1)求证:△ABC∽△ACP; 
(2)若PA=4,PB=5,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系xOy中,一次函数y=k1x+b与反比例函数y=$\frac{{k}_{2}}{x}$的图象交于点A(-3,2)和点B(1,m),连接BO并延长与反比例函数y=$\frac{{k}_{2}}{x}$的图象交于点C.
(1)求一次函数y=k1x+b和反比例函数y=$\frac{{k}_{2}}{x}$的表达式;
(2)是否在双曲线y=$\frac{{k}_{2}}{x}$上存在一点D,使得以点A、B、D、C为顶点的四边形成为平行四边形?若存在,请直接写出点D的坐标,并求出该平行四边形的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,已知⊙O圆心是数轴原点,半径为1,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设OP=x,则x的取值范围是(  )
A.-1≤x≤1B.-$\sqrt{2}$≤x≤$\sqrt{2}$C.0≤x≤$\sqrt{2}$D.x>$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,在四边形ABCD中,BA=BC,∠ABC=60°,∠ADC=30°,连接对角线BD.
(1)将线段CD绕点C顺时针旋转60°得到线段CE,连接AE.
①依题意补全图1;
②试判断AE与BD的数量关系,并证明你的结论;
(2)在(1)的条件下,直接写出线段DA、DB和DC之间的数量关系;
(3)如图2,F是对角线BD上一点,且满足∠AFC=150°,连接FA和FC,探究线段FA、FB和FC之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图1,四边形ABCD中,AB=AD,BC=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究“筝形”的性质和判定方法.小聪根据学习四边形的经验,对“筝形”的判定和性质进行了探究.
下面是小聪的探究过程,请补充完整:
(1)如图2,连接筝形ABCD的对角线AC,BD交于点O,通过测量边、角或沿一条对角线所在直线折叠等方法探究发现筝形有一组对角相等,请写出筝形的其他性质(一条即可):对角线互相垂直,这条性质可用符号表示为:已知四边形ABCD是筝形,则AC⊥BD.;
(2)从边、角、对角线或性质的逆命题等角度进行探究,写出筝形的一个判定方法(定义除外),并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知2015xn+7和-2017x2m+3是同类项,则(2m-n)2=16.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.不等式2x-5<3的正整数是1、2、3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:如图,△ABC是等边三角形,与BC平行的直线分别交AB和AC于点D,E,求证:△ADE是等边三角形.

查看答案和解析>>

同步练习册答案