精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2-3ax+4,
(1)求抛物线的对称轴;
(2)若抛物线与x轴交于A(-1,0)、B两点,且过第一象限上点D(m,m+1),求sin∠DAB.
分析:(1)根据抛物线的对称轴公式即可解答;
(2)将A(-1,0)代入y=ax2-3ax+4,求出抛物线解析式,进而求出B点坐标,将点D(m,m+1)代入抛物线解析式,求出m的值,再画出图形,根据三角函数的定义即可求出sin∠DAB的值.
解答:精英家教网解:(1)抛物线的对称轴为x=-
-3a
2a
=
3
2


(2)将A(-1,0)代入y=ax2-3ax+4得,
a+3a+4=0,
解得a=-1,
解析式为y=-x2+3x+4.
当y=0时,原式可化为x2-3x-4=0,
解得x1=-1,x2=4.
则B点坐标为(4,0).
将点D(m,m+1)代入y=-x2+3x+4得,
-m2+3m+4=m+1,
整理得,m2-2m-3=0,
解得m1=-1,m2=3.
则D点坐标为(-1,0)或(3,4).
∵D(-1,0)与A点重合,故舍去.
则D(3,4).
如图:因为D点坐标为(3,4),
所以OD=3,则AR=OA+OR=1+3=4,DR=4,
AD=
32+32
=3
2

sin∠DAB=sin∠DAR=
4
3
2
=
2
2
3
点评:此题考查了抛物线与x轴的交点与锐角三角函数的定义,求出抛物线解析式并画出草图是解题的关键.
而勾股定理也是重要解题工具.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案