【题目】如图,点C是线段AB上一点,点M、N、P分别是线段AC,BC,AB的中点.
(1)若AB=10cm,则MN= cm;
(2)若AC=3cm,CP=1cm,求线段PN的长.
【答案】(1)5;(2)PN=.
【解析】试题分析:(1)利用线段中点的性质得到MC,CN的长度,则MN=MC+CN;
(2)由已知条件可以求得AP=AC+CP=4cm,因为P是AB的中点,所以AB=2AP=8cm,BC=AB-AC=5cm,根据N为BC的中点,可求得CN,再根据PN=CN-CP即可求得PN的长.
试题解析:
(1)∵M、N分别是AC、BC的中点,
∴MC=AC,CN=BC
MN=MC+CN=.
故填:5.
(2)∵AC=3,CP=1,
∴AP=AC+CP=4,
∵P是线段AB的中点,
∴AB=2AP=8
∴CB=AB﹣AC=5,
∵N是线段CB的中点,CN=CB=,
∴PN=CN﹣CP=.
科目:初中数学 来源: 题型:
【题目】下列说法不正确的是( )
A.直角三角形的两个锐角互余
B.三角形任意两边之差小于第三边
C.三角形的三条角平分线交于一点,这个点叫做三角形的重心
D.线段垂直平分线上的点到这条线段两个端点的距离相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=.
(1)求反比例函数的解析式;
(2)连接OB,求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,那么EC与DF平行吗?为什么?请完成下面的解题过程.
解:∵BD平分∠ABC,CE平分∠ACB ( 已知 )
∴DBC=∠________,∠ECB=∠________
∵∠ABC=∠ACB (已知)
∴∠________=∠________.
∠________=∠________(已知)
∴∠F=∠________
∴EC∥DF________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x上有点A1,A2,A3,…An+1,且OA1=1,A1A2=2,A2A3=4,AnAn+1=2n分别过点A1,A2,A3,…An+1作直线y=x的垂线,交y轴于点B1,B2,B3,…Bn+1,依次连接A1B2,A2B3,A3B4,…AnBn+1,得到△A1B1B2,△A2B2B3,△A3B3B4,…,△AnBnBn+1,则△AnBnBn+1的面积为________.(用含有正整数n的式子表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.
(1)求抛物线的解析式及顶点D的坐标;
(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标;
(3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点P的坐标为(0,﹣5),以P为圆心的圆与x轴相切,⊙P的弦AB(B点在A点右侧)垂直于y轴,且AB=8,反比例函数(k≠0)经过点B,则k=______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com