精英家教网 > 初中数学 > 题目详情
同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:
(1)求|5-(-2)|=
7
7

(2)同样道理|x+5|+|x-2|表示数轴上有理数x所对点到-5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x-2|=7,这样的整数是
-5、-4、-3、-2、-1、0、1、2
-5、-4、-3、-2、-1、0、1、2

(3)由以上探索猜想对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有,写出最小值;如果没有,说明理由.
分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.
(2)要x的整数值可以进行分段计算,令x+5=0或x-2=0时,分为3段进行计算,最后确定x的值.
(3)根据(2)方法去绝对值,分为3种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值.
解答:解:(1)原式=|5+2|
=7
故答案为:7;

(2)令x+5=0或x-2=0时,则x=-5或x=2
当x<-5时,
∴-(x+5)-(x-2)=7,
-x-5-x+2=7,
x=5(范围内不成立)
当-5<x<2时,
∴(x+5)-(x-2)=7,
x+5-x+2=7,
7=7,
∴x=-4,-3,-2,-1,0,1
当x>2时,
∴(x+5)+(x-2)=7,
x+5+x-2=7,
2x=4,
x=2,
x=2(范围内不成立)
∴综上所述,符合条件的整数x有:-5,-4,-3,-2,-1,0,1,2;

(3)由(2)的探索猜想,对于任何有理数x,|x-3|+|x-6|有最小值为3.
点评:此题主要考查了去绝对值和数轴相联系的综合试题以及去绝对值的方法和去绝对值在数轴上的运用,难度较大,去绝对的关键是确定绝对值里面的数的正负性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

图1是一张宽与长之比为
5
-1
2
:1
的矩形纸片,我们称这样的矩形为黄金矩形.同学们都知道按图2所示的折叠方法进行折叠,折叠后再展开,可以得到一个正方形ABEF和一个矩形EFDC,那么EFDC这个矩形还是黄金矩形吗?若是,请根据图2证明你的结论;若不是,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

35、同学们都知道,|5-(-2)|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离.试探索:
(1)|5-(-2)|=
7

(2)找出所有符合条件的整数x,使|x+5|+|x-2|=7成立.
(3)由以上探索猜想,对于任何有理数x,|x-3|+|x-6|是否有最小值?如果有,写出最小值;如果没有,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

同学们都知道,|3-(-1)|表示3与-1之差的绝对值,实际上也可理解为3与-1两数在数轴上所对的两点之间的距离.试探索:
(1)求|3-(-1)|=
4
4

(2)找出所有符合条件的整数x,使得|x-3|+|x-(-1)|=4,这样的整数是
-1,0,1,2,3
-1,0,1,2,3

查看答案和解析>>

科目:初中数学 来源: 题型:

同学们都知道,|3-(-2)|表示3与-2之差的绝对值,它在数轴上的意义是表示3的点与表示-2的点之间的距离.
试探索:
(1)求|3-(-2)|=
5
5

(2)式子|x+3|在数轴上的意义是
表示x的点与表示-3的点之间的距离
表示x的点与表示-3的点之间的距离

(3)找出所有符合条件的整数x,使得|x+3|+|x-2|=5这样的整数是
-3,-2,-1,0,1,2
-3,-2,-1,0,1,2

查看答案和解析>>

同步练习册答案