精英家教网 > 初中数学 > 题目详情

如图,梯形ABCD中,AD∥BC,BE平分∠ABC,且BE⊥CD于E,P是BE上一动点.若BC=6,CE=2DE,则|PC-PA|的最大值是________.


分析:延长BA交CD的延长线于F,求出BF=BC,EF=CE,求出DF=DE=CF,求出PF=PC,根据两点之间线段最短得出|PC-PA|的最大值是PA,得出P和B重合时,得出最大值是AF的长,根据相似求出AF的值即可.
解答:延长BA交CD的延长线于F,
∵BE平分∠ABC,
∴∠FBE=∠CBE,
∵BE⊥CD,
∴∠BEF=∠BEC=90°,
∵在△FBE和△CBE中

∴△FBE≌△CBE(ASA),
∴BF=BC=6,EF=EC,
∵BE⊥CF,
∴PC=PF(线段垂直平分线上的点到线段的两个端点的距离相等),
即|PC-PA|=|PF-PA|,
根据两点之间线段最短得:|PF-PA|≤AF,
即当|PC-PA|的最大值是AF,
∴当P和B重合时,|PC-PA|=|BC-BA|=AF,
∵EF=CE,CE=2DE,
∴DF=DE=CE=CF,
∵AD∥BC,
∴△AFD∽△BFC,
==
∴AF=BC=×6=
即|PC-PA|的最大值是
故答案为:
点评:本题考查了全等三角形的性质和判定,相似三角形的性质和判定,线段垂直平分线定理等知识点的应用,关键是找出最大值是指哪一条线段的长,题目具有一定的代表性,但是有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,梯形ABCD中,AD∥BC,∠B=45°,∠C=120°,AB=8,则CD的长为(  )
A、
8
6
3
B、4
6
C、
8
2
3
D、4
2

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知:如图,梯形ABCD中,AD∥BC,AB=DC,AC、BD相交于点O,那么,图中全等三角形共有
3
对.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,梯形ABCD中,AD∥BC,BD为对角线,中位线EF交BD于O点,若FO-EO=3,则BC-AD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,已知AD∥BC,∠A=90°,AB=7,AD=2,cosC=
2
10

(1)求BC的长;
(2)试在边AB上确定点P的位置,使△PAD∽△PBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,AD∥BC,BC=5,AD=3,对角线AC⊥BD,且∠DBC=30°,求梯形ABCD的高.

查看答案和解析>>

同步练习册答案