精英家教网 > 初中数学 > 题目详情

在边长为4的正方形ABCD中,以点B为圆心,BA为半径作弧数学公式,F为数学公式上的一动点,过点F作⊙B的切线交AD于点P,交DC于点Q.
(1)求证△DPQ的周长等于正方形ABCD的周长的一半;
(2)分别延长PQ、BC,延长线相交于点M,设AP长为x,BM长为y,试求出y与x之间的函数关系式.

(1)证明:∵正方形ABCD,
∴∠DAB=∠D=∠DCB=90°,
即AB=BC=CD=AD,AB⊥AD,BC⊥CD,
∴DA和CD都是圆B的切线,
∵PQ切圆B于F,
∴AP=PF,QF=CQ,
∴△DPQ的周长是DP+DQ+PQ=DP+DQ+PF+QF=DP+AP+DQ+CQ=AD+CD,
∵正方形ABCD的周长是AD+AB+CD+BC=2AD+2CD,
∴△DPQ的周长等于正方形ABCD的周长的一半.

(2)解:在Rt△PDQ中,由勾股定理得:DP2+DQ2=PQ2
∴(4-x)2+(4-CQ)2=(X+CQ)2
解得:CQ=
DQ=4-=
∵正方形ABCD,
∴AD∥BC,
∴△PDQ∽△MCQ,
=
=
∴y=+x,
y与x之间的函数关系式是y=+x.
分析:(1)根据正方形性质得出AB⊥AD,BC⊥CD,推出DA和CB都是圆B的切线,根据切线长定理A得出PA=PF,QF=CQ,代入求出即可;
(2)在△DPQ中根据勾股定理求出CQ的值,求出DQ的值,根据平行线得出三角形相似,根据相似得出=,代入求出即可.
点评:本题考查了勾股定理,切线的判定,切线长定理,相似三角形的性质和判定,正方形的性质等知识点的运用,能综合运用这些性质进行推理和计算是解此题的关键,题目综合性比较强,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在边长为a的正方形铁块中,以两对边中点为圆心,以a为直径截取两个半圆,求余下废料的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网我国著名的数学家华罗庚曾说过:“数形结合百般好,割裂分家万事非”,如图,在边长为1的正方形纸板上,依次贴上面积为
1
2
1
4
1
8
,…,
1
2n
的长方形彩色纸片(n为大于1的整数),请你用“数形结合”的思想,依数形变化的规律,计算1-(
1
2
+
1
4
+
1
8
+
…+
1
2n
)=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

27、在边长为16cm的正方形纸片的四个角上各剪去一个同样大小的正方形,折成一个无盖的长方体(如图).
(1)如果剪去的小正方形的边长为xcm,求剪去小正方形后的纸片的周长?
(2)如果剪去的小正方形的边长为xcm,请用x表示这个无盖长方体的容积;
(3)当剪去的小正方形的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

在边长为1的正方形ABCD中,点M、N、O、P分别在边AB、BC、CD、DA上.如果AM=BM,DP=3AP,则MN+NO+OP的最小值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.
(1)如果剪去的小正方形的边长为xcm,请用x来表示这个无盖长方体的容积;
(2)当剪去的小正方体的边长x的值分别为3cm和3.5cm时,比较折成的无盖长方体的容积的大小.

查看答案和解析>>

同步练习册答案