精英家教网 > 初中数学 > 题目详情
(2012•聊城)某排球队12名队员的年龄如下表所示:
 年龄/岁  18  19  20  21  22
 人数/人  1  4  3  2  2
该队队员年龄的众数与中位数分别是(  )
分析:根据中位数和众数的定义求解.
解答:解:观察图表可知:人数最多的是4人,年龄是19岁,故众数是19.
共12人,中位数是第6,7个人平均年龄,因而中位数是20.
故选B.
点评:本题考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•聊城)某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•聊城一模)在一平直河岸l同侧有A,B两个村庄,A,B到l的距离分别是3km和2km,AB=akm(a>1).现计划在河岸l上建一抽水站P,用输水管向两个村庄供水.
某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为d1,且d1=PB+BA(km)(其中BP⊥l于点P);图2是方案二的示意图,设该方案中管道长度为d2,且d2=PA+PB(km)(其中点A′与点A关于l对称,A′B与l交于点P).

观察计算:(1)在方案一中,d1=
a+2
a+2
km(用含a的式子表示);
(2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,d2=
a2+24
a2+24
km(用含a的式子表示).
探索归纳:(1)①当a=4时,比较大小:d1
d2(填“>”、“=”或“<”);
②当a=6时,比较大小:d1
d2(填“>”、“=”或“<”);
(2)请你参考方法指导,就a(当a>1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?
方法指导:当不易直接比较两个正数m与n的大小时,可以对它们的平方进行比较:
∵m2-n2=(m+n)(m-n),m+n>0,
∴(m2-n2)与(m-n)的符号相同.
当m2-n2>0时,m-n>0,即m>n;
当m2-n2=0时,m-n=0,即m=n;
当m2-n2<0时,m-n<0,即m<n.

查看答案和解析>>

同步练习册答案