精英家教网 > 初中数学 > 题目详情
已知一组数据x1,x2,…,xn的方差是a。则数据x1-4,x2-4,…,xn-4的方差是         ;数据 3x1,3x2,…,3xn的方差是         
解:方差是用来衡量一组数据波动大小的量,每个数都减去4所以波动不会变,方差不变,仍为.但每个数乘以3,根据方差公式可知,方差变为
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

我市某中学八年级(1)班为开展“阳光体育运动”,决定自筹资金为班级购买体育器材,全班50名同学捐款情况如下表:
捐款(元)
5
10
15
20
25
30
人数
3
6
11
11
13
6
问该班同学捐款金额的众数和中位数分别是(   )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩(m)
1.50
1.60
1.65
1.70
1.75
1.80
人数
1
2
4
3
3
2
这些运动员跳高成绩的中位数和众数分别是        

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.

请你根据图表中的信息回答下列问题:
(1)求选择长跑训练的人数占全班人数的百分比及该班
学生的总人数;
(2)求训练后篮球定时定点投篮人均进球数;
(3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数
增加25%。请求出参加训练之前的人均进球数。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各选取了50株量出每株的长度.经计算,所抽取的甲、乙两种水稻秧苗长度的平均数都是13cm,方差=3.6,=2,因此水稻秧苗出苗更整齐的是 (    )  
A.一样整齐B.甲C.乙D.无法确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某班要从甲、乙两名同学中选一人参加学校运动会跳高比赛,对这两名同学进行了8次选拔比赛,他们的成绩如下(单位:m):(10′)
甲:1.60,1.55,1.58,1.59,1.62,1.63,1.58,1.57
甲:1.50,1.63,1.62,1.51,1.52,1.61,1.60,1.65
(1)甲、乙两名同学跳高的平均成绩分别是多少?
(2)哪个人的成绩更为稳定?
(3)经过预测,跳高成绩1.65 m就很可能获得冠军,该班为了获得跳高比赛冠军,可选哪名同学参加?若预测跳高成绩1.70m方可获得冠军,则选哪名同学参加?适当说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是【   】
A. 27B.29C.30D.31

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

学校要从甲、乙、丙三名中长跑运动员中选出一名奥运火炬传递手.先对三人一学期的1000米测试成绩作了统计分析如表一;又对三人进行了奥运知识和综合素质测试,测试成绩(百分制)如表二;之后在100人中对三人进行了民主推选,要求每人只推选1人,不准弃权,最后统计三人的得票率如图三,一票计2分.
(1)请计算甲、乙、丙三人各自关于奥运知识,综合素质,民主推选三项考查得分的平均成绩,并参考1000米测试成绩的稳定性确定谁最合适.
(2)如果对奥运知识、综合素质、民主推选分别赋予3,4,3的权,请计算每人三项考查的平均成绩,并参考1000米测试的平均成绩确定谁最合适.
                           

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如右表:则射击成绩最稳定的选手是:     

查看答案和解析>>

同步练习册答案