精英家教网 > 初中数学 > 题目详情

在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,a、b是关于x的方程x2-7x+c+7=0的两根,那么AB边上的中线长是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    5
  4. D.
    2
B
分析:由于a、b是关于x的方程x2-7x+c+7=0的两根,由根与系数的关系可知:a+b=7,ab=c+7;由勾股定理可知:a2+b2=c2,则(a+b)2-2ab=c2,即49-2(c+7)=c2,由此求出c,再根据直角三角形斜边中线定理即可得中线长.
解答:∵a、b是关于x的方程x2-7x+c+7=0的两根,
∴根与系数的关系可知:a+b=7,ab=c+7;
由直角三角形的三边关系可知:a2+b2=c2
则(a+b)2-2ab=c2
即49-2(c+7)=c2
解得c=5或-7(舍去),
再根据直角三角形斜边中线定理得:中线长为
答案:AB边上的中线长是
故选B.
点评:本题考查三角形斜边中线长定理及一元二次方程根与系数的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案