精英家教网 > 初中数学 > 题目详情
如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.
(1)求证:△ADE≌△CFE;
(2)若GB=2,BC=4,BD=1,求AB的长.
考点:相似三角形的判定与性质,全等三角形的判定与性质
专题:
分析:(1)由平行线的性质可得:∠A=∠FCE,再根据对顶角相等以及全等三角形的判定方法即可证明:△ADE≌△CFE;
(2)由AB∥FC,可证明△GBD∽△GCF,根据给出的已知数据可求出CF的长,即AD的长,进而可求出AB的长.
解答:(1)证明:∵AB∥FC,
∴∠A=∠FCE,
在△ADE和△CFE中,
∠A=∠FCE
∠DEA=∠FEC
DE=FE

∴△ADE≌△CFE(AAS);

(2)解:∵AB∥FC,
∴△GBD∽△GCF,
∴GB:GC=BD:CF,
∵GB=2,BC=4,BD=1,
∴2:6=1:CF,
∴CF=3,
∵AD=CF,
∴AB=AD+BD=4.
点评:本题考查了全等三角形的判定和性质、相似三角形的判定和性质以及平行线的性质,题目的设计很好,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)计算:|-1|-(
2
3
)
0
+4cos45°-
2

(2)解方程:x2+2x-1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.
(1)试说明四边形EFCG是矩形;
(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,
①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;
②求点G移动路线的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

某中学组织网络安全知识竞赛活动,其中七年级6个班组每班参赛人数相同,学校对该年级的获奖人数进行统计,得到每班平均获奖15人,并制作成如图所示不完整的折线统计图.
(1)请将折线统计图补充完整,并直接写出该年级获奖人数最多的班级是
 
班;
(2)若二班获奖人数占班级参赛人数的32%,则全年级参赛人数是
 
人;
(3)若该年级并列第一名有男、女同学各2名,从中随机选取2名参加市级比赛,则恰好是1男1女的概率是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

星期天,小强去水库大坝游玩,他站在大坝上的A处,看到一棵大树的影子刚好落在坝底的B处(假设大树DE与地面垂直,点A与大树及其影子在同一平面内),此时太阳光与地面成60°角;在A处测得树顶D的俯角为15°.如图所示,已知AB与地面的夹角为 60°,AB为12米.请你帮助小强计算一下这颗大树的高度?(结果精确到0.1米.参考数据:
2
≈1.41,
3
≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,把直角坐标系xoy放置在边长为1的正方形网格中,O是坐标原点,点A、O、B均在格点上,将△OAB绕O点按顺时针方向旋转90°后,得到△OA′B′.
(1)画出△OA′B′;
(2)点A的坐标是(
 
 
),点A′的坐标是(
 
 
);
(3)若点P在y轴上,且PA+PA′的值最小,则点P的坐标是(
 
 
).

查看答案和解析>>

科目:初中数学 来源: 题型:

列方程(组)解应用题:
如图,要建一个面积为40平方米的矩形宠物活动场地ABCD,为了节约材料,宠物活动场地的一边AD借助原有的一面墙,墙长为8米(AD<8),另三边恰好用总长为24米的栅栏围成,求矩形宠物活动场地的一边AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,△BPC是以PB为腰的等腰三角形,则PB的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

函数y=
x-2
x
的自变量取值范围是
 

查看答案和解析>>

同步练习册答案