解:(1)∵A,B两点关于x=1对称,
∴B点坐标为(3,0),
根据题意得:

,
解得a=1,b=-2,c=-3.
∴抛物线的解析式为y=x
2-2x-3.
(2)△AOC和△BOC的面积分别为S
△AOC=

|OA|•|OC|,S
△BOC=

|OB|•|OC|,
而|OA|=1,|OB|=3,
∴S
△AOC:S
△BOC=|OA|:|OB|=1:3.
(3)存在一个点P.C点关于x=1对称点坐标C'为(2,-3),
令直线AC'的解析式为y=kx+b
∴

,
∴k=-1,b=-1,即AC'的解析式为y=-x-1.
为x=1时,y=-2,
∴P点坐标为(1,-2).
分析:(1)根据抛物线的对称轴即可得出点B的坐标,然后将A、B、C三点坐标代入抛物线中即可求得二次函数的解析式.
(2)由于两三角形等高,那么面积比就等于底边的比,据此求解即可.
(3)本题的关键是确定P点的位置,根据轴对称图形的性质和两点间线段最短,可找出C点关于抛物线对称轴的对称点,然后连接此点和A,那么这条直线与抛物线对称轴的交点就是所求的P点.可先求出这条直线的解析式然后联立抛物线对称轴的解析式即可求得P点坐标.
点评:本题考查了二次函数解析式的确定,图形面积的求法、函数图象交点等知识点.
解题的关键是根据所学的知识确定点P的位置是解题的关键.