精英家教网 > 初中数学 > 题目详情
17.下列命题中,假命题是(  )
A.对角线互相平分的四边形是平行四边形
B.对角线互相平分且相等的四边形是矩形
C.对角线互相垂直平分的四边形是菱形
D.对角线互相垂直且相等的四边形是正方形

分析 根据平行四边形的判定方法可知A是真命题,根据矩形的判定方法可知B是真命题,根据菱形的判定方法可知C是真命题,根据对角线互相垂直平分且相等的四边形是正方形,可知D是假命题.

解答 解:A.对角线互相平分的四边形是平行四边形,是真命题;B.对角线互相平分且相等的四边形是矩形,是真命题;
C.对角线互相垂直平分的四边形是菱形,是真命题;
D.对角线互相垂直且相等的四边形是正方形,是假命题;
故选:D.

点评 本题主要考查了命题与定理,解题时注意:对角线互相垂直平分且相等的四边形是正方形,对角线互相垂直且相等的四边形可能是等腰梯形或筝形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.王老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:优秀;B:良好;C:合格;D:一般;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,王老师一共调查了多少名同学?
(2)将上面的条形统计图补充完整;并求出“D”所占的圆心角的度数;
(3)从被调查的A类和D类学生中分别选取一位同学进行“一对一”互助学习,请求出所选两位同学恰好是一位男同学和一位女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在矩形ABCD中,AB=3,AD=4,点P从点A出发,沿折线AC-CB向终点B运动,点P在AC上的速度为每秒2个单位长度,在CB上的速度为每秒1个单位长度,同时,点Q从点A出发,沿AC以每秒1个单位长度的速度向终点C运动,当点Q到达终点时,点P也随之停止.过点P作PM⊥AD于点M,连接QM,以PM、QM为邻边作?PMQN,设?PMQN与矩形ABCD重叠部分图形的周长为d(长度单位),点P的运动时间为t(秒)(t>0)
(1)求AC的长
(2)用含t的代数式表示线段CP的长.
(3)当点P在线段AC上时,求d与t之间的函数关系式.
(4)经过点N的直线将矩形ABCD的面积平分,若该直线同时将?PMQN的面积分成1:3的两部分,直接写出此时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.先化简,再求代数式的值:($\frac{a+2}{{a}^{2}-2a}$-$\frac{a-1}{{a}^{2}-4a+4}$)÷$\frac{a-4}{a}$,其中a=2tan45°-4sin60°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:
(1)(-$\frac{1}{2}$)×(-1$\frac{1}{3}$)÷(-$\frac{1}{12}$);
(2)5×(-1)2017-(-3)2+(-2)4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验;先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的长(精确到0.1米,参考数据:$\sqrt{3}$≈1.732,$\sqrt{2}$≈1.414);
(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时3秒,这辆校车在AB段是否超速?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,AB∥CD∥EF,∠ABE=70°,∠DCE=144°,求∠BEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.计算:(1)$\sqrt{12}$-|$\sqrt{3}$-3|+$\sqrt{{(-3)}^{2}}$;
           (2)$\frac{\sqrt{6}-\sqrt{3}}{\sqrt{3}}$+(2+$\sqrt{2}$)•(2-$\sqrt{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在?ABCD中,∠ABC的平分线交AD于点E,过点D作BE的平行线交于BC于F.
(1)求证:△ABE≌△CDF;
(2)若AB=6,BC=8,求DE的长.

查看答案和解析>>

同步练习册答案