精英家教网 > 初中数学 > 题目详情
甲车在弯路做刹车试验,收集到的数据如下表所示:
速度(千米/时)
0
5
10
15
20
25

刹车距离(米)
0

2

6


(1)请用上表中的各对数据作为点的坐标,在如图所示的坐标系中画出刹车距离(米)与速度(千米/时)的函数图象,并求函数的解析式;

(2)在一个限速为40千米/时的弯路上,甲、乙两车相向而行,同时刹车,但还是相撞了.事后测得甲、乙两车刹车距离分别为12米和10.5米,又知乙车刹车距离(米)与速度(千米/时)满足函数,请你就两车速度方面分析相撞原因.
见解析

试题分析:(1)描出各点再按自变量的小到大的顺序连线.有图象知是抛物线,设函数解析式为y=ax2+bx+c用待定系数法找三点代入即可求得a,b,c.从而求得解析式(2)甲、乙两车刹车距离分别为12米和10.5米,即函数值,分别代入y=x2+x和,解出速度(千米/时)与限速为40千米/时比较分析相撞原因.
试题解析:(1)图象见图
设函数解析式为y=ax2+bx+c,
把(0,0),(10,2),(20,6)代入,得,解得
∴y=x2+x. 
(2)当y=12时,即x2+x=12,解得x1=-40(舍去),x2=30,
当y=10.5时,10.5=x,解得x=42.
因乙车行驶速度已超过限速40千米/时,速度太快,撞上了正常行驶的甲车.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,以点A(,0)为圆心,以为半径圆与x轴相交于点B,C,与y轴相交于点D,E.

(1)若抛物线经过点C,D两点,求抛物线的解析式,并判断点B是否在该抛物线上;
(2)在(1)中的抛物线的对称轴上有一点P,使得△PBD的周长最小,求点P的坐标;
(3)设Q为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M,使得四边形BCQM是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.

(1)点     (填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将抛物线向左平移个单位长度,使之过点,求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=一x2+ax+b图象与轴交于,两点,且与轴交于点.

(1)则的形状为                 
(2)在此抛物线上一动点,使得以四点为顶点的四边形是梯形,则点的坐标为                     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知抛物线C经过原点,对称轴与抛物线相交于第三象限的点M,与x轴相交于点N,且

(1)求抛物线C的解析式;
(2)将抛物线C绕原点O旋转1800得到抛物线,抛物线与x轴的另一交点为A,B为抛物线上横坐标为2的点。
①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
②过线段OA上的两点E、F分别作x轴的垂线,交折线O-B-A于E1、F1,再分别以线段EE1、FF1为边作如图2所示的等边△AE1E2、等边△AF1F2,点E以每秒1个长度单位的速度从点O向点A运动,点F以每秒1个长度单位的速度从点A向点O运动,当△AE1E2有一边与△AF1F2的某一边在同一直线上时,求时间t的值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知抛物线y=与x轴交于点A、B,顶点为C,则△ABC的面积为_______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若一次函数的图象与轴的交点坐标为(﹣2,0),则抛物线的对称轴为(      )
A.直线x=1B.直线x=﹣2 C.直线x=﹣1 D.直线x=﹣4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

是二次函数,则=________________________  

查看答案和解析>>

同步练习册答案