精英家教网 > 初中数学 > 题目详情
本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
甲:如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.
证明:(1)BD=DC;(2)DE是⊙O的切线.

乙:已知关于x的一元二次方程mx2-(2m-1)x+m-2=0(m>0).
(1)证明:这个方程有两个不相等的实根
(2)如果这个方程的两根分别为x1,x2,且(x1-5)(x2-5)=5m,求m的值.
选甲,
证明:(1)连接AD,
∵AB是直径,
∴AD⊥BC,
又∵AB=AC,
∴BD=CD.

(2)证明:连接OD,
∵AB=AC,BD=DC,
∴∠BAC=2∠BAD,
∵OA=OD,
∴∠OAD=∠ODA,
∵∠BOD=∠OAD+∠ODA,
∴∠BOD=2∠BAD,
∴∠BAC=∠BOD,
∴ODAC,
又∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1所示,在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.
(1)点E,F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,请指出△OEF为等腰三角形时动点E,F的位置;若不能,请说明理由;
(2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,写出x的取值范围;
(3)在满足(2)中的条件时,若以O为圆心的圆与AB相切(如图2),试探究直线EF与⊙O的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点D在⊙O的直径AB的延长线上,点C在⊙O上,AC=CD,∠A=30°.
(1)求证:CD是⊙O的切线;
(2)若⊙O的半径为3,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
(1)求证:点F是BD中点;
(2)求证:CG是⊙O的切线;
(3)若FB=FE=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的直径,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.
(1)求证:AT平分∠BAC;
(2)若AD=2,TC=
3
,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC内接于⊙O,过点B的切线与CA的延长线相交于点E,且∠BEC=90°,点D在OA的延长线上,AO⊥BC,∠ODC=30°.
(1)求证:DC为⊙O的切线.
(2)若CA=6,求DC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P是⊙O外一点,割线POB与⊙O相交于A、B,切线PC与⊙O相切于C,若PA=2,PC=3,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在等腰梯形ABCD中,ADBC,AB=DC,且BC=2.以CD为直径作⊙O′交AD于点E,过点E作EF⊥AB于点F.建立如图所示的平面直角坐标系,已知A、B两点坐标分别为A(2,0)、B(0,2
3
).
(1)求C、D两点的坐标;
(2)求证:EF为⊙O′的切线;
(3)将梯形ABCD绕点A旋转180°到A′B′C′D′,直线CD上是否存在点P,使以点P为圆心,PD为半径的⊙P与直线C′D′相切?如果存在,请求出P点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,线段AB与⊙O相切于点C,连接OA,OB,已知OA=OB=5cm,AB=8cm,求⊙O的半径.

查看答案和解析>>

同步练习册答案