分析 (1)先根据平行线的判定定理得出BE∥AC,故可得出∠DBE=∠DAC,再由∠DAC=∠C即可得出结论;
(2)根据∠C=∠CBE得出BE∥AC,故∠CAE=∠E,再由∠DAE=∠CAE即可得出结论.
解答 (1)证明:∵∠C=∠CBE(已知),
∴BE∥AC(内错角相等,两直线平行),
∴∠DBE=∠DAC(两直线平行,同位角相等).
∵∠DAC=∠C(已知),
∴∠DBE=∠CBE(等量代换).
故答案为:内错角相等,两直线平行;两直线平行,同位角相等;等量代换;
(2)证明:∵∠C=∠CBE(已知),
∴BE∥AC(内错角相等,两直线平行 ),
∴∠CAE=∠E(两直线平行,内错角相等 ).
∵∠DAE=∠CAE(已知),
∴∠DAE=∠E(等量代换 ).
点评 本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com