(本题满分10分)
如图,将OA = 6,AB = 4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为 ;用含t的式子表示点P的坐标为 ;(3分)
(2)记△OMP的面积为S,求S与t的函数关系式(0 < t < 6);并求t为何值时,S有最大值?(4分)
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.(3分)
(1)(6,4);()
(2)当时,S有最大值
(3)存在,在y轴上存在点T1(0,),T2(0,)符合条件
解析:解:(1)(6,4);().(其中写对B点得1分) 3分
(2)∵S△OMP =×OM×, 4分
∴S =×(6 -t)×=+2t.
=(0 < t <6). 6分
∴当时,S有最大值. 7分
(3)存在.
由(2)得:当S有最大值时,点M、N的坐标分别为:M(3,0),N(3,4),
则直线ON的函数关系式为:.
设点T的坐标为(0,b),则直线MT的函数关系式为:,
解方程组得
∴直线ON与MT的交点R的坐标为.
∵S△OCN =×4×3=6,∴S△ORT = S△OCN=2. 8分
当点T在点O、C之间时,分割出的三角形是△OR1T1,如图,作R1D1⊥y轴,D1为垂足,则S△OR1T1=••••RD1•OT =••b=2.
∴, b =.
∴b1 =,b2 =(不合题意,舍去)
此时点T1的坐标为(0,). 9分
② 当点T在OC的延长线上时,分割出的三角形是△R2NE,如图,设MT交CN于点E,由①得点E的横坐标为,作R2D2⊥CN交CN于点D2,则
S△R2NE=•EN•R2D2=••=2.
∴,b=.
∴b1=,b2=(不合题意,舍去).
∴此时点T2的坐标为(0,).
综上所述,在y轴上存在点T1(0,),T2(0,)符合条件.…10分
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011年江苏省泰州市中考数学试卷 题型:解答题
(本题满分10分)如图,以点O为圆心的两个同心圆中,矩形ABCD的边BC为大圆的弦,边AD与小圆相切于点M,OM的延长线与BC相交于点N。
(1)点N是线段BC的中点吗?为什么?
(2)若圆环的宽度(两圆半径之差)为6cm,AB=5cm,BC=10cm,求小圆的半径。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com