£¨2010•³~¿ÚÇøÄ£Ä⣩Èçͼ1£¬Å×ÎïÏßy=a£¨x-2£©2-2µÄ¶¥µãΪC£¬Å×ÎïÏßÓëxÖá½»ÓÚA£¬BÁ½µã£¨ÆäÖÐAµãÔÚBµãµÄ×ó±ß£©£¬CH¡ÍABÓÚH£¬ÇÒtan¡ÏACH=
12

£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©ÔÚ×ø±êƽÃæÄÚÊÇ·ñ´æÔÚÒ»µãD£¬Ê¹µÃÒÔO¡¢B¡¢C¡¢DΪ¶¥µãµÄËıßÐÎÊǵÈÑüÌÝÐΣ¿Èô´æÔÚ£¬ÇóËùÓеķûºÏÌõ¼þµÄDµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨3£©Èçͼ2£¬½«£¨1£©ÖеÄÅ×ÎïÏßƽÒÆ£¬Ê¹Æ䶥µãÔÚyÖáµÄÕý°ëÖáÉÏ£¬ÔÚyÖáÉÏÊÇ·ñ´æÔÚÒ»µãM£¬Ê¹µÃƽÒƺóµÄÅ×ÎïÏßÉϵÄÈÎÒâÒ»µãPµ½xÖáµÄ¾àÀëÓëPµãµ½MµÄ¾àÀëÏàµÈ£¿Èô´æÔÚ£¬Çó³öMµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾Ý¸ø³öµÄÅ×ÎïÏß½âÎöʽ£¬Äܵõ½¶¥µãCµÄ×ø±ê£¬ÔòCH³¤¿ÉÇó£¬ÔÚRt¡÷ACHÖУ¬½áºÏ¡ÏACHµÄÕýÏÒÖµÄܵõ½AHµÄ³¤£¬ÔÚÈ·¶¨µãAµÄ×ø±êºó´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬¼´¿ÉÇó³ö´ý¶¨ÏµÊýµÄÖµ£®
£¨2£©ÕâµÀÌâÐèÒª³ä·ÖÀûÓõÈÑüÌÝÐεÄÐÔÖÊ£ºÁ½µ×ƽÐС¢Á½ÑüÏàµÈ¡¢¶Ô½ÇÏßÏàµÈ¡¢Í¬Ò»µ×ÉϵÄÁ½ÄÚ½ÇÏàµÈ£®Ê×Ïȸù¾ÝÉÏÊöÌصãÖеÄÏàµÈ½Ç£¬ÕÒ³öµãDµÄ´óÖÂλÖã¬È»ºóÔÙ¸ù¾ÝÏàµÈµÄ±ß³¤Çó³öµãDµÄ×ø±ê£¬ÔÚÇó½âʱҪ·ÖÈýÖÖÇé¿ö¿¼ÂÇ£ºÒÔOB¡¢OC¡¢BCΪϵ׽øÐп¼ÂÇ£®
£¨3£©Ê×ÏÈÓÃδ֪Êý±íʾƽÒƺóµÄÅ×ÎïÏß½âÎöʽ£¨Æ½Òƹý³ÌÖУ¬¶þ´ÎÏîϵÊýÊDz»±äµÄ£©ºÍµãMµÄ×ø±ê£¬È»ºóÓÃÁ½µã¼äµÄ¾àÀ빫ʽÇó³öPMµÄ³¤£¬ÒÀ¾Ý¡°Pµ½xÖáµÄ¾àÀëÓëPµãµ½MµÄ¾àÀëÏàµÈ¡±×÷ΪµÈÁ¿Ìõ¼þÇó³öµãMµÄ×ø±ê£®
½â´ð£º½â£º£¨1£©ÓÉÅ×ÎïÏߵĽâÎöʽ֪£ºC£¨2£¬-2£©£»
ÔÚRt¡÷ACHÖУ¬CH=2£¬AH=CH•tan¡ÏACH=2¡Á
1
2
=1£¬Ôò A£¨1£¬0£©¡¢B£¨3£¬0£©£®
½«µãAµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽÖУ¬µÃ£º
0=a£¨1-2£©2-2£¬Ôò a=2£»
¡àÅ×ÎïÏߵĽâÎöʽ£ºy=2£¨x-2£©2-2=2x2-8x+6£®

£¨2£©¼ÙÉè´æÔÚ·ûºÏÌõ¼þµÄDµã£®
Á¬½ÓOC¡¢BC£¬ÓÉB£¨3£¬0£©¡¢C£¨2£¬-2£©µÃ£º
OB=3£»¡ÏHOC=¡ÏHCO=45¡ã£¬OC=2
2
£»tan¡ÏHBC=2£¬BC=
5
£®
¢Ùµ±OB¡ÎCD1¡¢OD1=BCʱ£¬ÈçÓÒͼ£»
µãD1µÄºá×ø±êµÄ×Ý×ø±êÓëBH³¤Ïàͬ£¬ÔòµãD1£¨1£¬-2£©£®
¢Úµ±OD2¡ÎBC¡¢OC=BD2ʱ£»
tan¡ÏD2OB=tan¡ÏHBC=2£¬Ôò Ö±ÏßOD2£ºy=2x£»
ÉèµãD2£¨x£¬2x£©£¬Ôò£ºBD2=
(x-3)2+(2x-0)2
=
5x2-6x+9
£¬
ÓÉOC=BD2µÃ£º2
2
=
5x2-6x+9
£¬½âµÃ£ºx=
1
5
£¬x=1£¨Éᣩ
¼´µãD2£¨
1
5
£¬
2
5
£©£®
¢Ûµ±OC¡ÎBD3¡¢OD3=BCʱ£»
¡ÏD3BO=¡ÏHOC=45¡ã£¬¼´tan¡ÏD3BO=1£¬¿ÉÉè B£¨x£¬3-x£©£»
ÓÉOD3=BC=
5
£¬µÃ£º
x2+£¨3-x£©2=5£¬½âµÃ x=2£¬x=1£¨Éᣩ
¼´µãD3£¨2£¬1£©£®
×ÛÉÏ¿ÉÖª£¬´æÔÚ·ûºÏÌõ¼þµÄµãD£¬ÇÒ×ø±êΪ£º£¨1£¬-2£©¡¢£¨
1
5
£¬
2
5
£©¡¢£¨2£¬1£©£®

£¨3£©ÉèƽÒƺóµÄÅ×ÎïÏß½âÎöʽΪ£ºy=2x2+m£¬ÄÇôÆ䶥µãΪ£¨0£¬m£©£¬Èô´æÔÚ·ûºÏÌõ¼þµÄµãM£¬ÔòM£¨0£¬2m£©£»£¨m£¾0£©
ÉèP£¨x£¬2x2+m£©£¬Ôò£º
PM2=£¨x-0£©2+£¨2x2+m-2m£©2=x2+4x4-4mx2+m2£¬Pµ½xÖáµÄ¾àÀ룺2x2+m£»
ÒÀÌâÒâÓУºx2+4x4-4mx2+m2=£¨2x2+m£©2£¬½âµÃ£ºm=
1
8
£®
¡à´æÔÚ·ûºÏÌõ¼þµÄµãM£¬ÇÒ×ø±êΪ M£¨0£¬
1
4
£©£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢µÈÑüÌÝÐεÄÅж¨ºÍÐÔÖÊ¡¢½âÖ±½ÇÈý½ÇÐΡ¢×ø±êϵÁ½µã¼äµÄ¾àÀ빫ʽµÈÖØҪ֪ʶ£®×îºóÁ½¸öСÌâÊǸÃÌâµÄÄѵ㣬ÌرðÊÇ£¨2£©Ì⣬ÓÉÓÚ¿¼ÂDz»¹»È«Ãæ¶øÔì³ÉµÄ©½âÊÇÈÝÒ׳ö´íµÄµØ·½£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•³~¿ÚÇøÄ£Ä⣩ÔÚ3£¬-4£¬0£¬-2£¬5Õâ5¸öÊýÖУ¬×îСµÄÊýÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•³~¿ÚÇøÄ£Ä⣩ÏÂÁк¯ÊýÖУ¬×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§ÊÇx¡Ý2µÄº¯ÊýÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•³~¿ÚÇøÄ£Ä⣩Èçͼ£¬ÒÑÖªÖ±Ïßy=kx+b¾­¹ýA£¨1£¬3£©¡¢B£¨-1£¬-1£©Á½µã£¬Çó²»µÈʽkx+b£¾0µÄ½â¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•³~¿ÚÇøÄ£Ä⣩Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¡÷ABCµÄÈý¸ö¶¥µãµÄ×ø±ê·Ö±ðA£¨0£¬1£©£¬B£¨-1£¬1£©£¬C£¨-1£¬3£©£®
£¨1£©Èô¡÷A1B1C1Óë¡÷ABC¹ØÓÚxÖá¶Ô³Æ£¬ÇëÖ±½Óд³öµãC1µÄ×ø±ê£»
£¨2£©»­³ö¡÷ABCÈÆÔ­µãO˳ʱÕë·½ÏòÐýת90¡ãºóµÃµ½µÄ¡÷A2B2C2£¬²¢Ö±½Óд³öµãC2µÄ×ø±ê£»
£¨3£©½«¡÷ABCÏÈÏòÉÏƽÒÆ1¸öµ¥Î»£¬½Ó×ÅÔÙÏòÓÒƽÒÆ3¸öµ¥Î»µÃµ½¡÷A3B3C3£¬ÇëÔÚ×ø±êϵÖÐÏÈ»­³ö¡÷A3B3C3£¬´ËʱÎÒÃÇ·¢ÏÖ¡÷A3B3C3¿ÉÒÔÓÉ¡÷A2B2C2¾­¹ýÐýת±ä»»µÃµ½£¬Æä±ä»»¹ý³ÌÊǽ«¡÷A2B2C2
ÏòÉÏƽÒÆÒ»¸öµ¥Î»£¬È»ºóÈƵãB2ÄæʱÕëÐýת90¡ã
ÏòÉÏƽÒÆÒ»¸öµ¥Î»£¬È»ºóÈƵãB2ÄæʱÕëÐýת90¡ã
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•³~¿ÚÇøÄ£Ä⣩Èçͼ£¬¡÷ABCÖУ¬AB=AC£¬ÒÔABΪֱ¾¶µÄ¡ÑO½»BCÓÚDµã£¬EÊÇACµÄÑÓ³¤ÏßÉÏÒ»µã£¬Á¬½ÓBE£¬¡ÏBEC+2¡ÏCBE=90¡ã£®
£¨1£©ÇóÖ¤£ºBEÊÇ¡ÑOµÄÇÐÏߣ»
£¨2£©Èôtan¡ÏCBE=
12
£¬Çósin¡ÏEµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸