精英家教网 > 初中数学 > 题目详情
1.已知反比例函数y=$\frac{6}{x}$,当x>3时,y的取值范围是0<y<2.

分析 根据反比例函数的性质可以得到反比例函数y=$\frac{6}{x}$,当x>3时,y的取值范围.

解答 解:∵y=$\frac{6}{x}$,6>0,
∴当x>0时,y随x的增大而减小,当x=3时,y=2,
∴当x>3时,y的取值范围是0<y<2,
故答案为:0<y<2.

点评 本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.在边长为2的等边三角形ABC中,P是BC边上任意一点,过点 P分别作 PM⊥A B,PN⊥AC,M、N分别为垂足.
(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;
(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下面调查中,适合采用普查的是(  )
A.调查你所在的班级同学的身高情况B.调查全国中学生心理健康现状
C.调查我市食品合格情况D.调查中央电视台《少儿节目》收视率

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为$\sqrt{14}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,-4),B(3,-3),C(1,-1).
(1)将△ABC先向上平移5个单位,再向左平移3个单位,画出平移后得到的△A1B1C1
(2)写出△A1B1C1各顶点的坐标;
(3)若△ABC内有一点P(a,b),请写出平移后得到的对应点P1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.分解因式:(1)9ax2-ay2
                  (2)2x3y+4x2y2+2xy3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.关于x的一元一次不等式$\frac{m-2x}{3}$≤-2的解集为x≥4,则m的值为(  )
A.14B.7C.-2D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)实验与探究
①在下列三个图中,给出菱形ABCD的顶点A,B,D的坐标(如图所示),写出图(1),(2),(3)中点C的坐标,它们分别是(8,4)、(e+c,d)、(c+e-a,d);

②菱形绕原点逆时针依照(90°,2)旋转后点C对应的点C1的坐标分别是(-4,16)、(-2d,2e+2c)、(-2d,2c+2e-2a).(其中(90°,2)表示旋转90°,长度扩大2倍)
(2)归纳与发现
①在图4中,给出菱形ABCD的顶点A,B,D的坐标,求出顶点C的坐标;(点C的坐标用含a,b,c,d,e,f的代数式表示)

②菱形绕原点逆时针依照(90°,2)旋转后对应的C1的坐标为多少.
(3)运用与推广
①通过对图(1),(2),(3),(4)的观察和顶点C的坐标的探究,你会发现:无论菱形ABCD处于直角坐标系的哪个位置,当顶点坐标为:A(a,b),B(c,d),C(m,n),D(e,f)时,四个顶点的横坐标a,c,m,e之间的等量关系为m=c+e-a;纵坐标b,d,n,f之间的等量关系为n=d+f-b.(不必证明);
②通过顶点C的坐标和旋转后的C1的坐标探究,你会发现无论C点在哪个位置,绕原点逆时针依照(90°,n)旋转,设C(x1,y1),C1(x2,y2),则x1,x2,y1,y2满足的等式是x2=-ny1,y2=nx1(不必证明).
(备注:有两点A(x1,y1),B(x2,y2),则它们的中点P的坐标为($\frac{{{x_1}+{x_2}}}{2}$,$\frac{{{y_1}+{y_2}}}{2}$))

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.计算:a0÷a-1=a.

查看答案和解析>>

同步练习册答案