·ÖÎö £¨1£©Ö»ÐèÏÈÇó³öµãA¡¢BµÄ×ø±ê£¬È»ºóÔËÓôý¶¨ÏµÊý·¨¾Í¿ÉÇó³öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Ò×Çó³öµãE¡¢CµÄ×ø±ê£¬´Ó¶øÇó³öECµÄ³¤£®Ò×Ö¤EC¡ÎDP£¬ÒªÊ¹ÒÔE£¬C£¬P£¬DΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬Ö»ÐèDP=EC£¬Ö»ÐèÓú¬ÓÐmµÄ´úÊýʽ±íʾ³öµãD¡¢PµÄ×Ý×ø±ê£¬È»ºó¸ù¾ÝDP=EC½¨Á¢¹ØÓÚmµÄ·½³Ì²¢½â´Ë·½³Ì£¬¾Í¿É½â¾öÎÊÌ⣻
£¨3£©Á¬½ÓBP£¬ÓëxÖá½»ÓÚµãF£¬¹ýµãB×÷BH¡ÍxÖáÓÚH£¬¹ýµãF×÷FG¡ÍABÓÚG£¬ÈçͼËùʾ£®ÒªÇóµãPµÄ×ø±ê£¬Ö»ÐèÇó³öÖ±ÏßBPµÄ½âÎöʽ£¬Ö»ÐèÇó³öµãFµÄ×ø±ê£¬Ö»ÐèÇó³öAFµÄ³¤£¬Ò×Ö¤¡÷AOE¡×¡÷AGF¡×¡÷AHB£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʿɵÃAG=2GF£¬AH=2BH=4£¬¸ù¾Ý¹´¹É¶¨Àí¿ÉµÃAB=2$\sqrt{5}$£®ÓÉ¡ÏABP=45¡ã£¬FG¡ÍAB¿ÉµÃFG=BG£®ÉèFG=x£¬ÔòÓÐAG=2x£¬BG=x£¬AB=3x=2$\sqrt{5}$£¬´Ó¶ø¿ÉÇó³öx£¬¸ù¾Ý¹´¹É¶¨Àí¿ÉÇó³öAF£¬ÎÊÌâµÃÒÔ½â¾ö£®
½â´ð ½â£º£¨1£©¡ßµãA¡¢BÔÚÖ±Ïßy=$\frac{1}{2}$x+$\frac{1}{2}$ÉÏ£¬yA=0£¬yB=2£¬
¡àxA=-1£¬xB=3£¬
¡àA£¨-1£¬0£©£¬B£¨3£¬2£©£®
¡ßµãA¡¢BÔÚÅ×ÎïÏßy=x2+bx+cÉÏ£¬
¡à$\left\{\begin{array}{l}{1-b+c=0}\\{9+3b+c=0}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{b=-\frac{3}{2}}\\{c=-\frac{5}{2}}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=x2-$\frac{3}{2}$x-$\frac{5}{2}$£»
£¨2£©¡ßµãCÊÇÅ×ÎïÏßy=x2-$\frac{3}{2}$x-$\frac{5}{2}$ÓëyÖáµÄ½»µã£¬
¡àC£¨0£¬-$\frac{5}{2}$£©£®
¡ßµãEÊÇÖ±Ïßy=$\frac{1}{2}$x+$\frac{1}{2}$ÓëyÖáµÄ½»µã£¬
¡àE£¨0£¬$\frac{1}{2}$£©£¬
¡àEC=$\frac{1}{2}$-£¨-$\frac{5}{2}$£©=3£®
¡ßPD¡ÍxÖᣬ
¡àxD=xP=m£¬
¡àyD=$\frac{1}{2}$m+$\frac{1}{2}$£¬yP=m2-$\frac{3}{2}$m-$\frac{5}{2}$£¬![]()
¡àDP=|m2-$\frac{3}{2}$m-$\frac{5}{2}$-$\frac{1}{2}$m-$\frac{1}{2}$|=|m2-2m-3|£®
¡ßEC¡ÍxÖᣬDP¡ÍxÖᣬ
¡àEC¡ÎDP£®
¡àµ±DP=EC=3ʱ£¬ÒÔE¡¢C£¬P£¬DΪ¶¥µãµÄËıßÐÎÊÇÆ½ÐÐËıßÐΣ¬
´Ëʱ|m2-2m-3|=3£¬
½âµÃm1=1+$\sqrt{7}$£¬m2=1-$\sqrt{7}$£¬m3=0£¬m4=2£®
¡ßµãPΪyÖáÓÒ²àÅ×ÎïÏßÉÏÒ»¶¯µã£¬
¡àm=1+$\sqrt{7}$»ò2£»
£¨3£©µãPµÄ×ø±êΪ£¨$\frac{3}{2}$£¬-$\frac{5}{2}$£©£®
Ìáʾ£ºÁ¬½ÓBP£¬ÓëxÖá½»ÓÚµãF£¬¹ýµãB×÷BH¡ÍxÖáÓÚH£¬¹ýµãF×÷FG¡ÍABÓÚG£¬ÈçͼËùʾ£®
Ò×Ö¤¡÷AOE¡×¡÷AGF¡×¡÷AHB£¬´Ó¶ø¿ÉµÃ$\frac{GF}{AG}$=$\frac{BH}{AH}$=$\frac{OE}{AO}$=$\frac{1}{2}$£¬
ÔòÓÐAG=2GF£¬AH=2BH=4£¬AB=2$\sqrt{5}$£®
ÓÉ¡ÏABP=45¡ã£¬FG¡ÍAB¿ÉµÃFG=BG£®
ÉèFG=x£¬ÔòAG=2x£¬AF=$\sqrt{5}$x£¬BG=x£¬AB=3x=2$\sqrt{5}$£¬
¼´¿ÉµÃµ½x=$\frac{2\sqrt{5}}{3}$£¬AF=$\frac{10}{3}$£¬OF=AF-AO=$\frac{7}{3}$£¬F£¨$\frac{7}{3}$£¬0£©£¬
ÔËÓôý¶¨ÏµÊý·¨¿ÉµÃÖ±ÏßBFµÄ½âÎöʽΪy=3x-7£®
½â·½³Ì×é$\left\{\begin{array}{l}{y=3x-7}\\{y={x}^{2}-\frac{3}{2}x-\frac{5}{2}}\end{array}\right.$£¬µÃ
$\left\{\begin{array}{l}{{x}_{1}=\frac{3}{2}}\\{{y}_{1}=-\frac{5}{2}}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=3}\\{{y}_{2}=2}\end{array}\right.$£¬
¡àµãPµÄ×ø±êΪ£¨$\frac{3}{2}$£¬-$\frac{5}{2}$£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÔËÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ¡¢ÇóÖ±ÏßÓëÅ×ÎïÏߵĽ»µã×ø±ê¡¢Æ½ÐÐËıßÐεÄÅж¨¡¢ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ¡¢¹´¹É¶¨ÀíµÈ֪ʶ£¬ÔËÓ÷ÖÀàÌÖÂÛµÄ˼ÏëÊǽâ¾öµÚ£¨2£©Ð¡ÌâµÄ¹Ø¼ü£¬¾ßÓнâÈý½ÇÐÎÒâʶ£¨ÔÚ¡÷ABFÖÐÖªµÀÈý¸öÔªËØ¡ÏBAF¡¢¡ÏABF¼°AB¿ÉÇóAFµÈÆäËüÔªËØ£©Êǽâ¾öµÚ£¨3£©Ð¡ÌâµÄ¹Ø¼ü£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ÇòÔ±¼×¡¢ÒÒ½øÇò³É¼¨Í³¼Æ±í | |||||
| ¶¨µãA | ¶¨µãB | ¶¨µãC | ¶¨µãD | ¶¨µãE | |
| ÇòÔ±¼×³É¼¨ | 8 | 6 | 7 | 4 | 10 |
| ÇòÔ±Òҳɼ¨ | 7 | 8 | 7 | 6 | a |
| С¸ÕµÄ¼ÆËã½á¹û | ||
| ƽ¾ùÊý | ·½²î | |
| ÇòÔ±¼× | 7 | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com