精英家教网 > 初中数学 > 题目详情
如图,反比例函数y=
kx
的图象与一次函数y=mx+b的图象交于A(1,3),B(n,-1)两点.
(1)求反比例函数与一次函数的解析式;
(2)连接OA、OB,求△AOB的面积.
分析:(1)把A(1,3)代入y=
k
x
求出k,得出反比例函数的解析式,把B(n,-1)代入y=
3
x
求出n,得出B的坐标,把A、B的坐标代入y=mx+b得出
3=m+b
-1=-3m+b
,求出m=1,b=2,即可得出一次函数的解析式;
(2)求出C的坐标,根据三角形的面积公式分别求出△BOC和△AOC的面积即可.
解答:解:(1)∵把A(1,3)代入y=
k
x
得:k=3,
∴反比例函数的解析式是y=
3
x

∵把B(n,-1)代入y=
3
x
得:-1=
3
n

解得:n=-3,
∴B的坐标是(-3,-1),
∵把A、B的坐标代入y=mx+b得:
3=m+b
-1=-3m+b

解得:m=1,b=2,
∴一次函数的解析式为y=x+2;

(2)
设直线AB交y轴于C,
∵把x=0代入y=x+2得:y=2,
∴OC=2,
∴△AOB的面积S=S△AOC+S△BOC=
1
2
×2×1+
1
2
×3×2=4.
点评:本题考查了用待定系数法求一次函数和反比例函数的解析式,三角形的面积,一次函数与反比例函数的交点问题等知识点的应用,用了数形结合思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,反比例函数y=
kx
与一次函数y=ax的图象交于两点A、B,若A点坐标为(2,1),则B点坐标为
(-2,-1)
(-2,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
2x
的图象与一次函数y=kx+b的图象交于点A(m,2),点B(-2,n ),一次函数图象与y轴的交点为C.
(1)求一次函数解析式;
(2)求△AOC的面积;
(3)观察函数图象,写出当x取何值时,一次函数的值比反比例函数的值小?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
k
x
(x>0)的图象与一次函数y=ax+b的图象交于点A(1,6)和点B(3,2).当ax+b<
k
x
时,则x的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
2
x
在第一象限的图象上有一点P,PC⊥x轴于点C,交反比例函数y=
1
x
图象于点A,PD⊥y轴于点D,交y=
1
x
图象于点B,则四边形PAOB的面积为
1
1

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,反比例函数y=
kx
的图象经过A、B两点,点A、B的横坐标分别为2、4,过A作AC⊥x轴,垂足为C,且△AOC的面积等于4.
(1)求k的值;
(2)求直线AB的函数值小于反比例函数的值的x的取值范围;
(3)求△AOB的面积;
(4)在x轴的正半轴上是否存在一点P,使得△POA为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案