精英家教网 > 初中数学 > 题目详情

【题目】如图所示,直线DP和圆O相切于点C,交直线AE的延长线于点P,过点C作AE的垂线,交AE于点F,交圆O于点B,作平行四边形ABCD,连接BE,DO,CO.
(1)求证:DA=DC;
(2)求∠P及∠AEB的大小.

【答案】
(1)证明:在平行四边形ABCD中,AD∥BC,

∵CB⊥AE,

∴AD⊥AE,

∴∠DAO=90°,

∵DP与⊙O相切于点C,

∴DC⊥OC,

∴∠DCO=90°,

在Rt△DAO和Rt△DCO中,

∴Rt△DAO≌△Rt△DCO,

∴DA=DC


(2)解:∵CB⊥AE,AE是直径,

∴CF=FB= BC,

∵四边形ABCD是平行四边形,

∴AD=BC,

∴CF= AD,

∵CF∥DA,

∴△PCF∽△PDA,

= =

∴PC= PD,DC= PD,

∵DA=DC,

∴DA= PD,

在Rt△DAP中,∠P=30°,

∵DP∥AB,

∴∠FAB=∠P=30°,

∵AE是⊙O的直径,

∴∠ABE=90°,

∴∠AEB=60°.


【解析】(1)欲证明DA=DC,只要证明Rt△DAO≌△Rt△DCO即可;(2)想办法证明∠P=30°即可解决问题;
【考点精析】本题主要考查了平行四边形的性质和切线的性质定理的相关知识点,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.

(1)求抛物线的解析式;
(2)问:当t为何值时,△APQ为直角三角形;
(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标.
(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.

(1)填空:∠AOB= °,用m表示点A′的坐标:A′( );
(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;
(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:
①求a,b,m满足的关系式;
②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(n,﹣2).

(1)求反比例函数和一次函数的解析式;
(2)当一次函数的值小于反比例函数的值时,直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“救死扶伤”是我国的传统美德,某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图,根据统计图判断下列说法,其中错误的一项是(
A.认为依情况而定的占27%
B.认为该扶的在统计图中所对应的圆心角是234°
C.认为不该扶的占8%
D.认为该扶的占92%

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,C城市在A城市正东方向,现计划在A、C两城市间修建一条高速公路(即线段AC),经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120km的B处测得P在北偏东30°方向上,已知森林保护区是以点P为圆心,100km为半径的圆形区域,请问计划修建的这条高速公路是否穿越保护区,为什么?(参考数据: ≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB切⊙O于点B,OA=6,sinA= ,弦BC∥OA.
(1)求AB的长;
(2)求四边形AOCB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=kx+b分别与x轴、y轴交于A、B两点,过点B的抛物线y=﹣ (x﹣2)2+m的顶点P在这条直线上,以AB为边向下方做正方形ABCD.

(1)当m=2时,k= , b=;当m=﹣1时,k= , b=
(2)根据(1)中的结果,用含m的代数式分别表示k与b,并证明你的结论;
(3)当正方形ABCD的顶点C落在抛物线的对称轴上时,求对应的抛物线的函数关系式;
(4)当正方形ABCD的顶点D落在抛物线上时,直接写出对应的直线y=kx+b的函数关系式.

查看答案和解析>>

同步练习册答案