精英家教网 > 初中数学 > 题目详情

若函数y=2x+b经过点(1,3),则b=________.

1
分析:由于函数y=2x+b经过点(1,3),故可将点的坐标代入函数解析式,求出b的值.
解答:将点(1,3)代入y=2x+b得
3=2+b,
解得b=1.
故答案为:1.
点评:本题考查了一次函数图象上点的坐标特征,要知道函数图象上的点符合函数解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•湖里区一模)某店销售一种小工艺品.该工艺品每件进价12元,售价为20元.每周可售出40件.经调查发现,若把每件工艺品的售价提高1元,就会少售出2件.设每件工艺品售价提高x元,每周从销售这种工艺品中获得的利润为y元.
(1)填空:每件工艺品售价提高x元后的利润为
8+x
8+x
元,每周可售出工艺品
40-2x
40-2x
件,y关于x的函数关系式为
y=-2x2+24x+320
y=-2x2+24x+320

(2)若y=384,则每件工艺品的售价应确定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•漳州质检)七年级(1)班学生开展勤工俭学活动,计划制作A、B两种型号工艺品共100个,每种型号的工艺品均需要用到甲、乙两种原料,已知每制作一个工艺品所需甲、乙两种原料如下表:
A型 B型
0.5 0.2
0.3 0.4
现有甲种原料29kg,乙种原料37.2kg,假设制作x个A型号工艺品.
(1)x应满足的关系式是
B
B

A、
0.5x+0.2(100-x)<29
0.3x+0.4(100-x)<37.2
        B、
0.5x+0.2(100-x)≤29
0.3x+0.4(100-x)≤37.2

C、
0.5x+0.3(100-x)≤29
0.2x+0.4(100-x)≤37.2
        D、
0.5x+0.2(100-x)≥29
0.3x+0.4(100-x)≥37.2

(2)请你设计A、B两种工艺品的所有制作方案;
(3)经市场了解,A型号工艺品售价25元/个,B型号工艺品售价15元/个,若这两种型号的销售总额为y元,请写出y与x之间的函数关系式,并规划如何安排A、B两种型号的制作个数,使销售总额最大,求出最大销售总额.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•随州)某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20-0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.
(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.
(2)若公司第一年的年销售量利润(年销售利润=年销售收入-生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?
(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和-投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.

(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.

(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?

(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(湖北随州卷)数学(解析版) 题型:解答题

某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.

(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.

(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?

(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.

 

查看答案和解析>>

同步练习册答案