精英家教网 > 初中数学 > 题目详情
9.如图,在矩形纸片ABCD中,BC=40cm,AB=16cm,M点为BC边上的中点,点G沿B→A→D运动(不含端点),将矩形纸片沿直线MG翻折,使得点B落在AD边上,则折痕长度为10$\sqrt{5}$cm或8$\sqrt{5}$cm.

分析 过F作ME⊥AD于E,可得出四边形ABME为矩形,利用矩形的性质得到AE=BF,AB=EM,分两种情况考虑:(i)当G在AB上,B′落在AE上时,如图1所示,由折叠的性质得到B′M=BM,BG=B′G,在直角三角形EMB′中,利用勾股定理求出B′E的长,由AE-B′E求出AB′的长,设AG=x,由AB-AG表示出BG,即为B′G,在直角三角形AB′G中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出AG的长,进而求出BG的长,在直角三角形GBM中,利用勾股定理即可求出折痕MG的长;(ii)当G在AE上,B′落在ED上,如图2所示,同理求出B′E的长,设A′G=AG=y,由AE+B′E-AG表示出GB′,在直角三角形A′B′G中,利用勾股定理列出关于y的方程,求出方程的解得到y的值,求出AG的长,由AE-AG求出GE的长,在直角三角形GEM中,利用勾股定理即可求出折痕MG的长,综上,得到所有满足题意的折痕MG的长.

解答 解:如图1所示,过M作ME⊥AD于E,G在AB上,B′落在AE上,可得四边形ABME为矩形,

∴EM=AB=16,AE=BM,
又∵BC=40,M为BC的中点,
∴由折叠可得:B′M=BM=$\frac{1}{2}$BC=20,
在Rt△EFB′中,根据勾股定理得:B′E=$\sqrt{B′{M}^{2}-E{M}^{2}}$=12,
∴AB′=AE+B′E=20+12=32,
设AG=x,则有GB′=GB=16-x,
在Rt△AGB′中,根据勾股定理得:GB′2=AG2+A′B′2
即(16-x)2=x2+82
解得:x=6,
∴GB=16-6=10
在Rt△GBF中,根据勾股定理得:GM=$\sqrt{G{B}^{2}-B{M}^{2}}$=10$\sqrt{5}$;
(ii)如图2所示,过F作FE⊥AD于E,G在AE上,B′落在ED上,可得四边形ABME为矩形,

∴EM=AB=16,AE=BM,
又BC=40,M为BC的中点,
∴由折叠可得:B′M=BM=$\frac{1}{2}$BC=20,
在Rt△EMB′中,根据勾股定理得:B′E=$\sqrt{B′{M}^{2}-E{M}^{2}}$=12,
∴AB′=AE+B′E=20+12=32,
设AG=A′G=y,则GB′=AB′-AG=AE+EB′-AG=32-y,A′B′=AB=16,
在Rt△A′B′G中,根据勾股定理得:A′G2+A′B′2=GB′2
即y2+162=(32-y)2
解得:y=12,
∴AG=12,
∴GE=AE-AG=20-12=8,
在Rt△GEM中,根据勾股定理得:GM=$\sqrt{G{E}^{2}-E{M}^{2}}$=8$\sqrt{5}$,
综上,折痕MG=10$\sqrt{5}$或8$\sqrt{5}$.
故答案为:10$\sqrt{5}$cm或8$\sqrt{5}$cm.

点评 此题考查了翻折变换-折叠问题,涉及的知识有:矩形的判定与性质,勾股定理,利用了方程、转化及分类讨论的思想,是一道综合性较强的试题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

19.如图,△ABC是等腰直角三角形,点D在AB上,过D作DE⊥AB交AC于F,DE=BD,连接BE交AC于G.将一个45°角的顶点与点F重合,并绕点F旋转,这个角的两边分别交线段BC于P、Q两点,交BE于M、N两点.若AB=5,AD=1,CQ=1,则线段MN的长为$\frac{25\sqrt{2}}{14}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=50°,∠BDC=75°.求∠BED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知点E(2,1)在二次函数y=x2-8x+m(m为常数)的图象上,则点E关于图象对称轴的对称点坐标是(  )
A.(4,1)B.(5,1)C.(6,1)D.(7,1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.为了更好地贯彻落实国家关于“强化体育课和课外锻炼,促进青少年身心健康、体魄强健”的精神,某校大力开展体育活动.该校九年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图如下:
(1)求该班学生人数;
(2)请你补全条形图;
(3)求跳绳人数所占扇形圆心角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.若关于x的一元二次方程x2-2(2-k)x+k2+12=0有实数根α、β.
(1)求实数k的取值范围;
(2)若$\frac{α}{β-1}$+$\frac{β}{α-1}$=4,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.我国第一艘航空母舰“辽宁号“在海上服役,舰载机在空中飞行执行任务,需要舰上的空中加油机给补充油,如图甲所示,在空中加油过程中,设舰载机的油箱中的余油量Q1吨,加油飞机的加油油箱中的余油量为Q2吨,加油时间为t分钟Q1、Q2与t之间的函数图象如图甲所示.请回答下列问题:
(1)加油飞机的加油箱中装载了5.2吨油,将这些油全部加给舰载机需要5分钟;
(2)求加油过程中,舰载机的油箱中的余油量Q1(吨)与时间t(分钟)的函数关系式(并直接写出自变量的取值范围);
(3)求从加油开始经过几分钟加油机的油箱中的余油量与舰载机中的余油量相同;
(4)从加完油开始(此时舰载机在空中距航空母舰700千米),航空母舰以200千米/小时向东航行,而舰载机则以800千米/小时向西飞行执行任务,舰载机距航空母舰的距离为y,飞行时间为x,则y与x之间的函数图象如图乙所示.在不能再次空中加油的情况下,为了保证舰载机安全的降落航空母舰上,一定时间必须返回.求a的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.若2x3-ax2-5x+5=(2x2+ax-1)(x-b)+3,其中a,b为整数,则a+b的值为(  )
A.-4B.-2C.0D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在平面直角坐标系中,点A(0,n),B(m,0)中的m,n是方程组$\left\{\begin{array}{l}{m+n=-2}\\{m-n=-14}\end{array}\right.$的解,点C在x轴的正半轴上,且OA=2OC,AB=10,过点A作AD⊥y轴,过点C作CD⊥AD于点D,动点P从点D出发,以每秒2个单位长度的速度在射线DA上运动,同时另一动点Q从点B出发向终点A运动,速度是每秒3个单位长度,一点停止运动另一点也停止,设运动时间为t秒.
(1)求出点A、B、C的坐标;
(2)连接PC,请用含t的关系式来表示△PAC的面积S;
(3)是否存在某一时刻t,使△PAC的面积等于△BOQ面积的一半?若存在请求出t值,若不存在请说明理由.

查看答案和解析>>

同步练习册答案