精英家教网 > 初中数学 > 题目详情
在△ABC中,∠ACB=90°,BD是△ABC的角平分线,P是射线AC上任意一点 (不与A、D、C三点重合),过点P作PQ⊥AB,垂足为Q,交直线BD于E.
(1)如图①,当点P在线段AC上时,说明∠PDE=∠PED.
(2)作∠CPQ的角平分线交直线AB于点F,则PF与BD有怎样的位置关系?画出图形并说明理由.
分析:(1)由PQ与AB垂直,得到一对直角相等,理由直角三角形的两锐角互余得到两对角互余,再BD为角平分线,利用角平分线定义得到一对角相等,再由对顶角相等,利用等量代换即可得证;
(2)分两种情况,当P在线段AC上时,如图1所示,可得出PF与BD平行,由第一问的结论利用等角对等边得到PD=PE,利用角平分线定义及外角性质得到一对内错角相等,利用内错角相等两直线平行即可得证;当P在AC延长线时,PF垂直于BD,由PD=PE,利用三线合一即可得证.
解答:解:(1)∵PQ⊥AB,
∴∠EQB=∠C=90°,
∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°,
∵BD为∠ABC的平分线,
∴∠CBD=∠EBQ,
∵∠PED=∠BEQ,
∴∠PDE=∠PED;
(2)当P在线段AC上时,如图1所示,此时PF∥BD,

理由为:∵∠PDE=∠PED,
∴PD=PE,
∵PF为∠CPQ的平分线,∠CPQ为△PDE的外角,
∴∠CPF=∠QPF=∠PDE=∠PED,
∴PF∥BD;
当P在线段AC延长线上时,如图2所示,PF⊥BD,
理由为:∵∠PDE=∠PED,
∴PD=PE,
∵PM为∠CPQ的平分线,
∴PF⊥BD.
点评:此题考查了平行线的判定,以及直角三角形的性质,熟练掌握平行线的判定是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在△ABC中,AC=8,BC=6,AB=10,则△ABC的外接圆半径长为(  )
A、10B、5C、6D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

17、在△ABC中,AC=5,中线AD=4,那么边AB的取值范围为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,AC与⊙O相切于点A,AC=AB=2,⊙O交BC于D.
(1)∠C=
45
45
°;
(2)BD=
2
2

(3)求图中阴影部分的面积(结果用π表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•松江区二模)如图,已知在△ABC中,AC=15,AB=25,sin∠CAB=
45
,以CA为半径的⊙C与AB、BC分别交于点D、E,联结AE,DE.
(1)求BC的长;
(2)求△AED的面积.

查看答案和解析>>

同步练习册答案