精英家教网 > 初中数学 > 题目详情

已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F.
求证:四边形AECF是平行四边形.

证明:∵平行四边形ABCD中AB∥CD,
∴∠OAE=∠OCF,
又∵OA=OC,∠COF=∠AOE,
∴△AOE≌△COF(ASA),
∴OE=OF,
又∵OA=OC,
∴四边形AECF是平行四边形.
分析:求证四边形AECF是平行四边形.只要求证OE=OF,根据对角线互相平分的四边形是平行四边形即可求证.依据△AOE≌△COF即可证明OA=OC.
点评:本题主要考查了平行四边形的判定,正确求证OA=OC是证明的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

从边长为a的大正方形纸板中间挖去一个边长为b的小正方形后,将其截成四个相同的等腰梯形﹙如图①﹚,可以拼成一个平行四边形﹙如图②﹚.
现有一平行四边形纸片ABCD﹙如图③﹚,已知∠A=45°,AB=6,AD=4.若将该纸片按图②方式截成四个相同的等腰梯形,然后按图①方式拼图,则得到的大正方形的面积为
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,长方形各边均与坐标轴平行(或垂直),已知A、C两点坐标为A(
3
,-1),C(-
3
,1).
(1)求B、D两点的坐标;
(2)将长方形ABCD先向左平移
3
个单位长度,再向下平移1个单位长度,所得四边形的四个顶点的坐标分别是多少?精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知四边形ABCD,以此四边形的四条边为边向外分别作正方形,顺次连接这四个正方形的对角线交点E,F,G,H,得到一个新四边形EFGH.
(1)如图1,若四边形ABCD是正方形,则四边形EFGH
(填“是”或“不是”)正方形;
(2)如图2,若四边形ABCD是矩形,则(1)中的结论
(填“能”或“不能”)成立;
(3)如图3,若四边形ABCD是平行四边形,其他条件不变,判断(1)中的结论是否还成立?若成立,证明你的结论,若不成立,请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c(a≠0)的对称轴经过(2,0),且与y轴平行,抛物线与x轴相交于A(1,0),与y轴相交于B(0,3),其在对称轴左侧的图象如图所示,下面四个结论:
①x>2时,y随x的增大而增大;
②y=3时,x的值只能为0;
③若方程ax2+bx+c=0的两根为x1、x2,则|x1-x2|=2;
④抛物线的顶点坐标是(2,-1).
正确的个数为(  )

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(辽宁丹东) 题型:填空题

从边长为a的大正方形纸板中间挖去一个边长为b的小正方形后,将其截成四个相同的等腰梯形﹙如图①﹚,可以拼成一个平行四边形﹙如图②﹚.  

现有一平行四边形纸片ABCD﹙如图③﹚,已知∠A=45°,AB=6,AD=4.若将该纸片按图②方式截成四个相同的等腰梯形,然后按图①方式拼图,则得到的大正方形的面积为             .

 

查看答案和解析>>

同步练习册答案