精英家教网 > 初中数学 > 题目详情
(2003•泰安)如图,某人在C处由点D用测量仪测得大厦AB顶端A的仰角为26°,向大厦前进30m,到达C’处,由点D’测得A的仰角为43°.已知测量仪高CD=C’D’=1.3m,求大厦AB的高.(最后结果精确到0.01m)
参考数据:sin26°=0.4383,cos26°=0.8987,tan26°=0.4877,sin43°=0.6819,cos43°=0.7313,tan43°=0.9325.
【答案】分析:延长DD′交AB于点F,可以设AF=x.在直角△AD′F和直角△ADF中,可以根据三角函数用x表示出DF,D′F.根据CC′=30m,即DD′=30m,就可以得到关于x的方程,就可以求出x,得到AF,就能求出AB.
解答:解:延长DD′交AB于点F.
在直角△AD′F中,D′F=
在直角△ADF中,DF=
已知CC′=30m.即DD′=30m.
-=30.
解得AF≈30.68米.
∴AB=30.68+1.3=31.98m.
点评:解直角梯形可以通过作高线转化为解直角三角形和矩形的问题.
练习册系列答案
相关习题

科目:初中数学 来源:2003年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2003•泰安)如图,矩形OBCD的边OB=2,OD=4,过点B、C且与x轴相切于点A的⊙M,与y轴的另一交点为E.
(1)求点A、E的坐标;
(2)求过A、C、E三点的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2003年山东省泰安市中考数学试卷(解析版) 题型:解答题

(2003•泰安)如图,矩形OBCD的边OB=2,OD=4,过点B、C且与x轴相切于点A的⊙M,与y轴的另一交点为E.
(1)求点A、E的坐标;
(2)求过A、C、E三点的抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2003年山东省泰安市中考数学试卷(解析版) 题型:填空题

(2003•泰安)如图,水平放着的圆柱形排水管的截面半径是0.5m,其中水面宽AB为0.6m,则水的最大深度为    m.

查看答案和解析>>

科目:初中数学 来源:2003年山东省泰安市中考数学试卷(解析版) 题型:选择题

(2003•泰安)如图,菱形纸片ABCD的一内角为60°,边长为2,将它绕O点顺时针旋转90°后到A′B′C′D′位置,则旋转前后两菱形重叠部分多边形的周长是( )
A.8
B.4(-1)
C.8(-1)
D.4(+1)

查看答案和解析>>

科目:初中数学 来源:2003年山东省泰安市中考数学试卷(解析版) 题型:选择题

(2003•泰安)如图,矩形ABCD中,AB=2,BC=2,以BC的中点E为圆心,以AB长为半径作弧MHN与AB及CD交于M、N,与AD相切于H,则图中阴影部分的面积是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案