精英家教网 > 初中数学 > 题目详情
如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.
(1)指出图中∠AOD与∠BOE的补角;
(2)试说明∠COD与∠COE具有怎样的数量关系.
精英家教网
(1)与∠AOD互补的角∠BOD、∠COD;
与∠BOE互补的角∠AOE、∠COE.

(2)∠COD+∠COE=
1
2
∠AOB=90度.(提示:因为OD平分∠BOC,所以∠COD=
1
2
∠BOC).
又OE平分∠AOC,所以∠COE=
1
2
∠AOC,
所以∠COD+∠COE=
1
2
∠BOC+
1
2
∠AOC=
1
2
(∠BOC+∠AOC),
所以∠COD+∠COE=
1
2
∠AOB=90°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,O是直线AB上一点,OC,OD,OE是三条射线,且OC平分∠AOD,∠BOE=2∠DOE,∠COE=80°,求∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,O是直线AB上一点,若∠BOC=51°38′,则∠AOC=
128°22′

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,O是直线AB上一点,∠AOC=134°18′,求∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,O是直线AB上的一点,∠AOC=53°17′,则∠BOC的度数是
126°43′
126°43′

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,O是直线AB上任意一点,OC平分∠AOB.按下列要求画图并回答问题:
(1)分别在射线OA、OC上截取线段OD、OE,且OE=2OD;
(2)连接DE;
(3)以O为顶点,画∠DOF=∠EDO,射线OF交DE于点F;
(4)写出图中∠EOF的所有余角:
∠DOF,∠EDO
∠DOF,∠EDO

查看答案和解析>>

同步练习册答案