1£®Ä³É̳ǽ«Ã¿¼þ³É±¾Îª50ÔªµÄ¹¤ÒÕÆ·£¬ÒÔ60ÔªµÄµ¥¼Û³öÊÛʱ£¬Ã¿ÌìµÄÏúÊÛÁ¿ÊÇ400¼þ£®ÒÑÖªÔÚÿ¼þÕǼ۷ù¶È²»³¬¹ý15ÔªµÄÇé¿öÏ£¬Èôÿ¼þÕǼÛ1Ôª£¬ÔòÿÌì¾Í»áÉÙÊÛ³ö10¼þ£®Éèÿ¼þ¹¤ÒÕÆ·ÕÇÁËxÔª£®
£¨1£©Ð¡Ã÷¸ù¾ÝÌâÖеÄÊýÁ¿¹ØÏµÁгö´úÊýʽ£¨60-50+x£©ºÍ£¨400-10x£©£¬
ÆäÖдúÊýʽ£¨60-50+x£©±íʾÉÏÕǺóÿ¼þ¹¤ÒÕÆ·µÄÀûÈó£¬
´úÊýʽ£¨400-10x£©±íʾÉÏÕǺóÿÌìµÄÏúÊÛÁ¿£»
£¨2£©ÈôÉ̳ÇÏëÿÌì»ñµÃ6000ÔªµÄÀûÈó£¬Ó¦ÕǼ۶àÉÙÔª£¿

·ÖÎö £¨1£©¸ù¾ÝÌâÒâ¿ÉÒÔÃ÷È·ÌâÄ¿ÖеĴúÊýʽ±íʾµÄº¬Ò壬±¾ÌâµÃÒÔ½â¾ö£»
£¨2£©¸ù¾ÝÌâÒâ¿ÉÒÔÁгöÏàÓ¦µÄÒ»Ôª¶þ´Î·½³Ì£¬´Ó¶ø¿ÉÒÔ½â´ð±¾Ì⣬עÒâx¡Ü15£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£¬
´úÊýʽ£¨60-50+x£©±íʾÉÏÕǺóÿ¼þ¹¤ÒÕÆ·µÄÀûÈó£¬
´úÊýʽ£¨400-10x£©±íʾÉÏÕǺóÿÌìµÄÏúÊÛÁ¿£¬
¹Ê´ð°¸Îª£ºÉÏÕǺóÿ¼þ¹¤ÒÕÆ·µÄÀûÈó£¬ÉÏÕǺóÿÌìµÄÏúÊÛÁ¿£»
£¨2£©ÒÀÌâÒ⣬¿ÉµÃ£º
£¨60-50+x£©£¨400-10x£©=6000£¬
½âµÃ£¬x1=10£¬x2=20£¬
¡ß20£¾15£¬
¡àx=20²»·ûºÏÌâÒ⣬
¡àx=10£¬
´ð£ºÓ¦ÕǼÛ10Ôª£®

µãÆÀ ±¾Ì⿼²éÒ»Ôª¶þ´Î·½³ÌµÄÓ¦Ó㬽âÌâµÄ¹Ø¼üÊÇÃ÷È·ÌâÒ⣬ÕÒ³öËùÇóÎÊÌâÐèÒªµÄÌõ¼þ£¬ÁгöÏàÓ¦µÄ·½³Ì£¬×¢Òâ·½³Ì½â´ðÍê±Ïºó£¬×îºóÒª×÷´ð£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®£¨1£©ÈçͼËùʾΪһ¼¸ºÎÌåµÄÈýÊÓͼ£º
¢Ùд³öÕâ¸ö¼¸ºÎÌåµÄÃû³Æ£»
¢Ú»­³öÕâ¸ö¼¸ºÎÌåµÄÒ»ÖÖ±íÃæÕ¹¿ªÍ¼£»
¢ÛÈô³¤·½ÐεĸßΪ10cm£¬ÕýÈý½ÇÐεı߳¤Îª4cm£¬ÇóÕâ¸ö¼¸ºÎÌåµÄ²àÃæ»ý£®
£¨2£©·½³Ì$\frac{3}{2}$[£¨a-$\frac{5}{3}$£©x+$\frac{1}{2}$]=1ºÍ·½³Ì$\frac{1.7-2x}{0.3}$-1=$\frac{0.8+x}{0.6}$µÄ½âÏàͬ£¬ÇóaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔÚ¡¶¾ÅÕÂËãÊõ¡·ÖмÇÔØÒ»µÀÕâÑùµÄÌ⣺¡°½ñÓмס¢ÒÒ¶þÈ˳ÖÇ®²»ÖªÆäÊý£¬¼×µÃÒÒ°ë¶øÇ®ÎåÊ®£¬Òҵü×Ì«°ë¶øÒàÇ®ÎåÊ®£¬¼×¡¢ÒÒ³ÖÇ®¸÷¼¸ºÎ£¿¡±ÌâÄ¿´óÒâÊÇ£º¼×¡¢ÒÒÁ½È˸÷´øÈô¸ÉÇ®£¬Èç¹û¼×µÃµ½ÒÒËùÓÐÇ®µÄÒ»°ë£¬ÄÇô¼×¹²ÓÐÇ®50£¬Èç¹ûÒҵõ½¼×ËùÓÐÇ®µÄ$\frac{2}{3}$£¬ÄÇôÒÒÒ²¹²ÓÐÇ®50£®¼×¡¢ÒÒÁ½È˸÷Ðè´ø¶àÉÙÇ®£¿Éè¼×Ðè´øÇ®x£¬ÒÒ´øÇ®y£¬¸ù¾ÝÌâÒâ¿ÉÁз½³Ì×éΪ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x+y=50}\\{\frac{2}{3}x+y=50}\end{array}\right.$B£®$\left\{\begin{array}{l}{x+2y=50}\\{\frac{2}{3}x+y=50}\end{array}\right.$
C£®$\left\{\begin{array}{l}{\frac{1}{2}x+y=50}\\{x+\frac{2}{3}y=50}\end{array}\right.$D£®$\left\{\begin{array}{l}{x+\frac{1}{2}y=50}\\{\frac{2}{3}x+y=50}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÏß¶ÎAB=10cm£¬Ïß¶ÎBC=4cm£¬ÔòÏß¶ÎACµÄ³¤ÊÇ14»ò6cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èô¡ÏAΪÈñ½Ç£¬cosA=$\frac{\sqrt{2}}{2}$£¬Ôò¡ÏAµÄ¶ÈÊýΪ£¨¡¡¡¡£©
A£®75¡ãB£®60¡ãC£®45¡ãD£®30¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èçͼ£¬ÒÑÖªÒ»´Îº¯Êýy=2x+bºÍy=kx-3£¨k¡Ù0£©µÄͼÏó½»ÓÚµãP£¬Ôò¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}2x-y=-b\\ kx-y=3\end{array}\right.$µÄ½âÊÇ$\left\{\begin{array}{l}{x=4}\\{y=-6}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Èçͼ£¬½«¿íΪ1cmµÄ³¤·½ÐÎÖ½ÌõÑØBCÕÛµþ£¬Ê¹¡ÏCAB=45¡ã£¬ÔòÕÛµþºóÖØµþ²¿·ÖµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}}{2}$ cm2B£®$\sqrt{3}$ cm2C£®$\sqrt{2}$ cm2D£®$\frac{\sqrt{2}}{2}$ cm2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Å×ÎïÏßy=mx2-2mx+m-2£¨m¡Ù0£©µÄ¶¥µãΪA£¬ÓëxÖá½»ÓÚB£¬CÁ½µã£¨µãBÔÚµãC×ó²à£©£¬ÓëyÖḺ°ëÖá½»ÓÚµãD£®
£¨1£©ÇóµãAµÄ×ø±ê£»
£¨2£©Á¬½ÓAD²¢ÑÓ³¤½»xÖáÓÚE£¬ÈôAD£ºDE=4£º5£¬ÇóÅ×ÎïÏߵĽâÎöʽºÍB£¬CÁ½µãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬¡ÏADE=¡ÏB£¬ÈôAD£ºAB=2£º3£¬Ôò¡÷ADEÓë¡÷ABCµÄÃæ»ý±ÈΪ4£º9£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸