精英家教网 > 初中数学 > 题目详情
如图,折线AC-BC是一条公路的示意图,AC=8km,甲骑摩托车从A地沿这条公路到B地,速度为40km/h,乙骑自行车从C地到B地,速度为10km/h,两人同时出发,结果甲比乙早到6分钟.
(1)求这条公路的长;
(2)设甲乙出发的时间为t小时,求甲没有超过乙时t的取值范围.

【答案】分析:(1)设这条公路的长为xkm,则BC=(x-8)km,有题意可得等量关系:乙从C地到B地所用的时间-甲从A地沿这条公路到B地所用的时间=6分钟,根据等量关系列出方程即可;
(2)根据题意得出不等关系:甲t小时的路程≤乙t小时的路程+8km,根据不等关系列出不等式即可.
解答:解:(1)设这条公路的长为xkm,由题意得,

解这个方程得,x=12.
答:这条公路的长12km.

(2)由题意得,40t≤10t+8,
解这个不等式得:

答:当时,甲没有超过乙.
点评:此题主要考查了一元一次方程的应用,以及一元一次不等式的应用,关键是弄懂题意,找出题目中的等量关系或不等关系,列出方程或不等式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,在Rt△ACB中,∠C=90°,AC=4,BC=3,点P从点B出发沿BA以每秒1个单位长的速度向点A匀速运动,点Q从点A出发沿折线AC--CB--BA以每秒2个单位长的速度匀速运动,伴随着P、Q的运动,PE保持平行AC,且交BC于点E.点P、Q同时出发,当点P到达点A时,P、Q两点都停止运动,连接EQ.若设运动的时间为t(t>0),请解答下列问题:
(1)当t=1时,PE=
 
,QC=
 

(2)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长平分?若存在,求出此时t的值;若不存在,说明理由;
(3)设△AQP的面积为y,求y与t之间的函数关系式,并写出t的取值范围;
(4)是否存在某一时刻t,使△PQE为等腰三角形?若存在,求出此时t的值;若不存在,精英家教网说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•葫芦岛)如图,折线AC-BC是一条公路的示意图,AC=8km,甲骑摩托车从A地沿这条公路到B地,速度为40km/h,乙骑自行车从C地到B地,速度为10km/h,两人同时出发,结果甲比乙早到6分钟.
(1)求这条公路的长;
(2)设甲乙出发的时间为t小时,求甲没有超过乙时t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•路南区一模)已知:有一纸片如图,其中△ABC中,AD⊥BC,垂足为点D,BD=CD,点M在BA的延长线上.实施操作:将纸片沿一直线AN折叠,使AM和AC重合,并且过点C作CE⊥AN,垂足为点E.
(1)请用尺规,在图中画出折线AN;(保留作图痕迹)
(2)将图形补全,求证:四边形ADCE为矩形;
(3)当△ABC满足什么条件时,四边形ADCE是一个正方形?直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•成华区一模)如图,Rt△ABC中,∠C=90°,BC=3cm,AB=5cm.点P从点A出发沿AC以1.5cm/s的速度向点C匀速运动,到达点C后立刻以原来的速度沿CA返回;点Q从点B出发沿BA以1cm/s的速度向点A匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线PC-CB-BQ于点E.点P、Q同时出发,当点Q到达点A时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0),则当t=
25
11
40
23
25
11
40
23
秒时,四边形BQDE为直角梯形.

查看答案和解析>>

同步练习册答案