精英家教网 > 初中数学 > 题目详情

如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B.过点A作PB的平行线,交⊙O于点C.连接PC,交⊙O于点E;连接AE,并延长AE交PB于点K.求证:PE•AC=CE•KB.

证明:∵AC∥PB,
∴∠KPE=∠ACE.又PA是⊙O的切线,
∴∠KAP=∠ACE,故∠KPE=∠KAP,
∴△KPE∽△KAP,

即KP2=KE•KA.
由切割线定理得KB2=KE•KA
∴KP=KB,
∵AC∥PB,△KPE∽△ACE,
于是

即PE•AC=CE•KB.
分析:由△KPE∽△KAP,可得KP2=KE•KA,又由切割线定理得KB2=KE•KA,即KP=KB,再通过线段的转化,即可得出结论.
点评:本题主要考查了相似三角形的判定及性质以及切割线定理,能够掌握并熟练运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点P是⊙O外一点,PAB为⊙O的一条割线,且PA=AB,PO交⊙O于点C,若OC=3,OP=5,则AB长为(  )
A、
10
B、2
2
C、
6
D、
5

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图①,点C为线段AB上一点,△ACM和△CBN都是等边三角形,AN,BM交于点P,则△BCM≌△NCA,易证结论:①BM=AN.
(1)请写出除①外的两个结论:②
∠MBC=∠ANC
∠MBC=∠ANC
;③
∠BMC=∠NAC
∠BMC=∠NAC

(2)将△ACM绕点C顺时针方向旋转180°,使点A落在BC上.请对照原题图形在图②画出符合要求的图形.(不写作法,保留作图痕迹)
(3)在(2)所得到的下图②中,探究“AN=BM”这一结论是否成立.若成立,请证明:若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P为⊙O外一点,PO及延长线分别交⊙O于A、B,过点P作一直线交⊙O于M、N(异于A、B).求证:
(1)AB>MN;
(2)PB>PN;
(3)PA<PM.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

作业宝如图,点P为⊙O外一点,PO及延长线分别交⊙O于A、B,过点P作一直线交⊙O于M、N(异于A、B).求证:
(1)AB>MN;
(2)PB>PN;
(3)PA<PM.

查看答案和解析>>

科目:初中数学 来源:第3章《圆》中考题集(29):3.2 点、直线与圆的位置关系,圆的切线(解析版) 题型:选择题

如图,点P是⊙O外一点,PAB为⊙O的一条割线,且PA=AB,PO交⊙O于点C,若OC=3,OP=5,则AB长为( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案