精英家教网 > 初中数学 > 题目详情
如图:△ABC中,以BC为直径的⊙O交AB于D
(1)若∠ABC=∠ACD  求证:CA为⊙O的切线;
(2)若E在BD上且DE=CD,连接CE,作DH⊥BC于H交CE于P,求证:PC=PD;
(3)在(2)条件下,若⊙O半径为5,CE与AB交于F,CF=
152
,求:CD.
分析:(1)根据∠ABC+∠BCD=90°,可得∠ACD+∠BCD=90°,继而得出BC⊥AC,结合切线的判定定理可得出CA为⊙O的切线;
(2)证明∠PDC=∠PCD即可得出PC=PD;
(3)首先判断△CDF∽△BDC,可得出
CD
BD
=
CF
BC
=
3
4
,继而在Rt△BCD中可求出CD的长度.
解答:解:(1)∵BC为⊙O的直径,
∴∠BDC=90°,
∴∠ABC+∠BCD=90°,
又∵∠ABC=∠ACD,
∴∠ACD+∠BCD=90°,
∴BC⊥AC,
∴CA为⊙O的切线.

(2)∵∠CDP+∠DCH=90°,∠DBC+∠DCH=90°,
∴∠CDP=∠DBC,
又∵DE=CD,
∴∠DCP=∠DBC=∠CDP,
∴PD=PC;

(3)∵∠DCF=∠DBC,∠CDF=∠BDC=90°,
∴△CDF∽△BDC,
CD
BD
=
CF
BC
=
3
4

设CD=3x,则BD=4x,
在Rt△BCD中,BC=
CD2+BD2
=5x,则5x=10,
解得:x=2,
故可得CD=6.
点评:本题考查了圆的综合题,涉及了相似三角形的判定与性质、等腰三角形的判定及切线的判定,综合考察的知识点较多,解答本题需要我们熟练切线的判定定理及相似三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC中,以AB为直径的⊙O交BC于点P,且P为BC中点,PD⊥AC于点D.
(1)求证:PD是⊙O的切线;
(2)求证:AB=AC;
(3)若∠CAB=120°,BC=4,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•高淳县二模)如图,△ABC中,以AB为直径的⊙O交AC于D,交BC于E,已知CD=AD.
(1)求证:AB=CB;
(2)过点D作出⊙O的切线;(要求:用尺规作图,保留痕迹,不写作法)
(3)设过D点⊙O的切线交BC于H,DH=
32
,tanC=3,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,以B为圆心,BC长为半径的⊙B交边AB于D,AE⊥AB交CD的延长线于E,并且AE=AC.
(1)证明AC是⊙B的切线;
(2)探究DE•DC与2AD•DB是否相等,并说明理由;
(3)如果DE•DC=8,且BC=4,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•攀枝花)如图,△ABC中,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N,且BA•BM=BC•BN.
(1)求证:AC⊥BC;
(2)如果CM是⊙O的切线,N为OC的中点,当AC=4时,求AB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,以BC为边向外作△BCD,把△ABD绕着点D按顺时针方向旋转60°得到△ECD的位置,A、C、E三点恰好在同一直线上.
(1)若AB=3,AC=2,试求出线段AE的长度;
(2)若∠ADC=20°,求∠BDA的度数.

查看答案和解析>>

同步练习册答案