精英家教网 > 初中数学 > 题目详情
如图所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____________次旋转而得到, 每一次旋转_______度.
四、72  
解:根据题意,五角星的顶点是一个正五边形的五个顶点,
这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过四次旋转而得到,
每次旋转的度数为360°除以5,为72度.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是正方形,点G是BC边上任意一点,DE⊥AG于E,BF∥DE,交AG于F.
(1)求证:AF﹣BF=EF;
(2)将△ABF绕点A逆时针旋转,使得AB与AD重合,记此时点F的对应点为点F′,若正方形边长为3,求点F′与旋转前的图中点E之间的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

右图可以看作是一个等腰直角三角形旋转若干次而生成的则每次旋转的度数可以是
A.900B.600
C.450D.300

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下图中②③④⑤分别由①图顺时针旋转180°变换而成的是____________。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC的顶点A、B、C的坐标分别是A(-1,-l),B(-5,-4),C(-5,-l)

(1)作出△ABC关于点O(0,0)中心对称的图形△A1B1C1,并直接写出顶点A1的坐标.
(2)将△ABC绕原点O按顺时针方向旋转90°后得到△A2B2C2,画出△A2B2C2,并直接写出顶点A2、的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在Rt△ABC中,∠ACB=90º,∠A=30º,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为(  )
A.30,2B.60,2C. 60,D. 60,

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列图形中是中心对称图形的是--------(    )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,观察①、②、③的变化规律,则第④张图形应为            (    )

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

请尝试解决以下问题:
(1)如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,

由旋转可得:AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°  ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,   ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
(2)运用(1)解答中所积累的经验和知识,完成下题:
如图2,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,且∠BAE=45°,DE=4,求BE的长.

(3)类比(1)证明思想完成下列问题:在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若∆ABC固定不动,∆AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),在旋转过程中,等式BD+CE=DE始终成立,请说明理由.

查看答案和解析>>

同步练习册答案