精英家教网 > 初中数学 > 题目详情
(2013•烟台)如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为
25
4
,上、下底之比为1:2,则BD=
5
3
5
3
分析:设梯形的四边长为5,5,x,2x,根据平均数求出四边长,求出△BDC是直角三角形,根据勾股定理求出即可.
解答:解:设梯形的四边长为5,5,x,2x,
5+5+x+2x
4
=
25
4

x=5,
则AB=CD=5,AD=5,BC=10,
∵AB=AD,
∴∠ABD=∠ADB,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠DBC,
∵∠ABC=60°,
∴∠DBC=30°,
∵等腰梯形ABCD,AB=DC,
∴∠C=∠ABC=60°,
∴∠BDC=90°,
∴在Rt△BDC中,由勾股定理得:BD=
102-52
=5
3

故答案为:5
3
点评:本题考查了梯形性质,平行线性质,勾股定理,三角形内角和定理,等腰三角形的性质等知识点的应用,关键是求出BC、DC长和得出三角形DCB是等腰三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•烟台)如图,已知⊙O1的半径为1cm,⊙O2的半径为2cm,将⊙O1,⊙O2放置在直线l上,如果⊙O1在直线l上任意滚动,那么圆心距O1O2的长不可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•烟台)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于A北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:
2
≈1.41,
3
≈1.73,
6
≈2.45,结果精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•烟台)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=-
1
2
x+3交AB,BC分别于点M,N,反比例函数y=
k
x
的图象经过点M,N.
(1)求反比例函数的解析式;
(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•烟台)如图,AB是⊙O的直径,BC是⊙O的切线,连接AC交⊙O于点D,E为
AD
上一点,连结AE,BE,BE交AC于点F,且AE2=EF•EB.
(1)求证:CB=CF;
(2)若点E到弦AD的距离为1,cos∠C=
3
5
,求⊙O的半径.

查看答案和解析>>

同步练习册答案