精英家教网 > 初中数学 > 题目详情
16.已知x为实数,且$\frac{3}{{x}^{2}+9x}-({x}^{2}+9x)=2$,那么x2+9x的值为(  )
A.1B.-3或1C.3D.-1或3

分析 设x2+9x=y,方程变形后,求出解得到y的值,经检验即可确定出所求式子的值.

解答 解:设x2+9x=y,方程变形为$\frac{3}{y}$-y=2,
去分母得:3-y2=2y,即y2+2y-3=0,
分解因式得:(y-1)(y+3)=0,
解得:y=1或y=-3,
经检验y=1与y=-3都为分式方程的解,
则x2+9x的值为-3或1,
故选B

点评 此题考查了换元法解分式方程,当分式方程比较复杂时,通常采用换元法使分式方程简化.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.先化简,再求值:$\frac{x}{{{x^2}-2x+1}}÷(\frac{x+1}{{{x^2}-1}}+1)$,其中x=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,在四边形ABCD中,∠ABC=60°,∠BAD=120°,∠ADC=90°,对角线BD平分∠ABC,过点D作DE⊥BA,交BA的延长线于点E.若AD=2,则四边形BCDE的周长为(  )
A.6+$\sqrt{3}$B.6+2$\sqrt{3}$C.7+$\sqrt{3}$D.7+2$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列说法中,正确的个数是(  )
(1)连结两点的线段叫做两点间的距离
(2)同一平面内,不相交的两条线段平行
(3)两点之间,线段最短
(4)AB=BC,则点B是线段AC的中点.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.图(a)、图(b)是两张形状,大小完全相同的8×8的方格纸,方格纸中的每个小正方形的边长均为1,请在图(a)、图(b)中分别画出符合要求的图形,要求:所画图形各顶点必须与方格纸中的小正方形顶点重合.
(1)以AB为一边,画一个成中心对称的四边形ABCD,使其面积为12;
(2)以EF为一边,画△EFP,使其面积为$\frac{15}{2}$的轴对称图形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABC的面积等于四边形AFBD的面积;③BE2+DC2=DE2;④BE+DC=DE,其中正确的是①②③(只填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知:如图,点E是⊙O的直径,AB上一个动点(与A,B不重合),在AB下方有一条弦CD始终与AB保持平行,且AE=CD.连接AC,ED,延长ED交⊙O切线BF于点F,延长CD交BF于点M.请探究当点E在运动时:
(1)四边形ACDE能够成为菱形吗?写出你的猜想并给予证明.
(2)MB与MF数量关系是否发生变化?写出猜想并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在菱形ABCD中,E、F分别为边AD、CD上的点,且AE=CF,BE和BF交AC于点M、N.
(1)求证:AM=CN;
(2)联结BD,如果BD是AC与MN的比例中项,求证:BE⊥AD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.若$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$是方程ax-y=0的解,则a=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案